Skip to main content

Advertisement

Log in

Identification of Rhizosphere Bacterial Diversity with Promising Salt Tolerance, PGP Traits and Their Exploitation for Seed Germination Enhancement in Sodic Soil

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

The present research was carried to explore bacterial diversity in rhizosphere of salt tolerant rice and wheat genotypes cultivated in sodic soils and examined for the plant growth promoting traits, seed germination and vigor index of wheat in salt affected soils of pH > 9.30. Soil was collected and analyzed for physico-chemical properties using standard methods. Valuable bacterial population was isolated from the rhizosphere of salt tolerant rice and wheat varieties grown in salt affected sodic soils of Uttar Pradesh, India. Isolates were tested for PGP traits, NaCl uptake and tolerance at varying concentration (0.5, 5.0, 7.5, 10.0%). Bacterial isolates possessing high salt tolerance and PGP traits were selected for molecular identification and further exploited for the seed germination in wheat. On the basis of partial sequencing of 16S rRNA gene in nine potential isolates were confirmed as Pseudomonas sp., Agromyces tropicus, Lysinibacillus fusiformis, Bacillus flexus, Lysinibacillus sp., Bacillus tequilensis, Bacillus licheniformis, Pseudomonas mendocina and Bacillus licheniformis, respectively. The Lysinibacillus sp. was most effective in terms of improving seed germination percent (83%), shoot length (20.3 cm), fresh (0.41 g) and dry weight (0.057 g), and seedlings vigor index I (2056.2) and II (6.2). On the other side, root growth (length, fresh and dry weight) was found significantly higher with the inoculation of Lysinibacillus fusiformis. Salt tolerant PGPR of this study could be useful for the reclamation of saline/sodic soils concomitant with improved plant growth and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdul Baki AA, Anderson JD (1973) Vigour determination in soybean seed by multiple criteria. Crop Sci 13:630–633

    Article  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashkan A, Jalal M (2013) Effects of salinity stress on seed germination and seedling vigor indices of two halophytic plant spp. (Agropyron elongatum and A. pectiniforme). Intl J Agric Crop Sci 5(22):2669–2676

    Google Scholar 

  4. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3:82–92

    Article  Google Scholar 

  5. Brick JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Google Scholar 

  6. Cheng KL, Bray RH (1951) Determination of calcium and magnesium in soil and plant material. Soil Sci 72:449

    Article  Google Scholar 

  7. Cohen AC, Bottini R, Piccoli PN (2008) Azospirillium brasilense Sp 245 produces ABA in chemically defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    Article  CAS  Google Scholar 

  8. Damadaran T, Rai RB, Jha SK, Kannan R, Pandey BK, Sah V, Mishra VK, Sharma DK (2013) Rhizosphere and endophytic bacteria for induction of salt tolerance in Gladiolus grown in sodic soils. J Plant Interact 9(1):577–584

    Article  CAS  Google Scholar 

  9. Dennis C, Webster J (1971) Antagonistic properties of species-groups of Trichoderma I. Production of non-volatile antibiotics. Trans Br Mycol Soc 57:25–39

    Article  CAS  Google Scholar 

  10. Duffy BK (1994) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    Google Scholar 

  11. Edi-Premono M, Moawad MA, Vleck PLG (1996) Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones J Crop Sci 11:13–23

    Google Scholar 

  12. Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  13. Egamberdiyeva D, Islam KR (2008) Salt tolerant rhizobacteria: plant growth promoting traits and physiological characterization within ecologically stressed environment. In: Ahmad I, Pichtel J, Hayat S (eds) Plant–bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinheim, pp 257–281

    Chapter  Google Scholar 

  14. Fierro-Coronado RA, Quiroz-Figueroa FR, García-Pérez LM, Ramírez-Chávez E, Molina-Torres J, Maldonado-Mendoza IE (2014) IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass. Can J Microbiol 60(10):639–648

    Article  CAS  PubMed  Google Scholar 

  15. Glick BR, Penrose DM, Li L (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  16. Gupta M, Kiran S, Gulatic A, Singh B, Tewari R (2012) Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res 167:358–363

    Article  CAS  PubMed  Google Scholar 

  17. Gupta RK, Abrol IP (2000) Salinity build-up and changes in the rice-wheat system of the Indo-Gangetic plains. Exp Agric 36:273–284

    Article  Google Scholar 

  18. Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hashem A, Abd Allah EF, Alqarawi AA, El-Didamony G, Alwhibi Mona S, Egamberdieva D, Ahmad P (2014) Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak J Bot 46:2003–2013

    Google Scholar 

  20. Hirt H (2009) Plant stress biology: from genomics to systems biology. Wiley, Weinheim

    Book  Google Scholar 

  21. Hofte M, Boelens J, Verstraete W (1992) Survival and root colonization of mutants of plant growth promoting Pseudomonads affected in siderophore biosynthesis or regulation of siderophore production. J Plant Nutr 15:2253–2262

    Article  CAS  Google Scholar 

  22. Lorck H (1948) Production of hydrocyanic acid by bacteria. Plant Physiol 1:142–146

    Article  CAS  Google Scholar 

  23. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  24. Lugtenberg BJJ, Kamilova FD (2004) Rhizosphere management: microbial manipulation for biocontrol. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 1098–1101

    Chapter  Google Scholar 

  25. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  26. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17(362):p.e370

    Google Scholar 

  27. Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  PubMed  Google Scholar 

  28. Quadt-Hallmann A, Hallman J, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  29. Raju NS, Niranjana SR, Janardhana GR, Prakash HS, Shetty HS, Mathur SB (1999) Improvement of seed quality and field emergence of Fusarium moniliforme infected sorghum seeds using biological agents. J Sci Food Agric 79:206–212

    Article  CAS  Google Scholar 

  30. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2(6):1–7

    Google Scholar 

  31. Richards LA (1954) Diagnosis and improvement of saline and alkali soils. US Salinity Lab. US Department of Agriculture Handbook 60. California, USA

  32. Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  33. Schwyn B, Neilands JB (1987) Universal chemical assay for detection and determination of siderophore. Ant Biochem 160:47–56

    Article  CAS  Google Scholar 

  34. Singh K, Trivedi P, Singh G, Singh B, Patra D (2016) Effect of different leaf litters on carbon, nitrogen and microbial activities of sodic soils. Land Degrad Develop 27(4):1215–1226

    Article  Google Scholar 

  35. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  36. Thompson DC (1996) Evaluation of bacterial antagonist for reduction of summer patch symptoms in Kentucky blue grass. Plant Dis 80:856–862

    Article  Google Scholar 

  37. Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916

    Article  CAS  Google Scholar 

  38. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496

    Article  CAS  PubMed  Google Scholar 

  39. Usha Rani M, Arundhathi Reddy G (2011) Bacillus cereus and Enterobacter cancerogenus screened for their efficient plant growth promoting traits rhizobacteria (PGPR) and antagonistic traits among sixteen bacterial isolates from rhizospheric soils of pigeon pea A. J Microbial R 5(15):2090–2094

    CAS  Google Scholar 

  40. Vakalounakis DJ, Fragkiadakis GA (1999) Genetic diversity of Fusarium oxysporum isolates from cucumber: differentiation by pathogenicity, vegetative compatibility, and RAPD fingerprinting. Phytopathology 89:161–168

    Article  CAS  PubMed  Google Scholar 

  41. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The Rhizosphere. Wiley, New York, pp 59–97

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, ICAR-CSSRI, Lucknow and Director, ICAR-NBAIM, Mau India, for providing financial support and necessary facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Damodaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damodaran, T., Mishra, V.K., Jha, S.K. et al. Identification of Rhizosphere Bacterial Diversity with Promising Salt Tolerance, PGP Traits and Their Exploitation for Seed Germination Enhancement in Sodic Soil. Agric Res 8, 36–43 (2019). https://doi.org/10.1007/s40003-018-0343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-018-0343-5

Keywords

Navigation