Skip to main content
Log in

Diversity and Antifungal Activity of Fungal Endophytes of Asparagus racemosus Willd

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

Endophytic microbes are hosted inside plants in a symbiotic and hugely benefitting relationship. In the present work, 60 asymptomatic fungi representing nine different genera were isolated from 286 plant tissues of Asparagus racemosus. Fungal endophytes were identified by ITS rDNA sequencing. Penicillium sp. was the most dominant fungus. Tissue specificity was observed by principal component analysis. Cluster analysis revealed correlation between fungal species abundance and mean temperature. Highest Shannon diversity was recorded in leaf tissues (\({H^\prime }\) = 1.279) from Delhi in 2010. Pielou’s evenness index was highest in stem tissues sampled from Hyderabad in the first survey. Of the total number of isolates examined, 12% of fungal endophytes demonstrated antifungal activity against the causal agents of four distinctive plant diseases (grey mould, stem rot, root rot and wilting, i.e. Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani and Fusarium oxysporum, respectively) in dual-culture bioassay. Penicillium sp. (isolate ARDS-2.3) and Aspergillus oryzae (isolate ARHS-1.1) displayed most effective antifungal activity with IC50 value ranging from 0.381 to 0.955 mg/ml against the broad-spectrum phytopathogens investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274. https://doi.org/10.1046/j.1461-0248.2000.00159.x7

    Article  Google Scholar 

  2. Banerjee D (2011) Endophytic fungal diversity of plants in tropical and subtropical. Res J Microbiol 6(1):54–62. https://doi.org/10.3923/jm.2011.54.62

    Article  Google Scholar 

  3. Battu GR, Kumar BM (2010) Phytochemical and antimicrobial activity of leaf extract of Asparagus racemosus Willd. Pharmacogn J 2(12):456–463

    Article  Google Scholar 

  4. Bopana N, Saxena S (2007) Asparagus racemosus—ethnopharmacological evaluation and conservation needs. J Ethnopharmacol 110(1):1–15. https://doi.org/10.1016/j.jep.2007.01.001

    Article  PubMed  Google Scholar 

  5. Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3032–3043

    Article  Google Scholar 

  6. Chhipa H, Kaushik N (2017) Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Front Microbiol 8:1286

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the indian medicinal plant Ocimum sanctum Linn. PLoS ONE 10(11):e0141444. https://doi.org/10.1371/journal.pone.0141444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chowdhary K, Kaushik N (2017) Biodiversity and in vitro inhibition study of fungal endophytes of Chlorophytum borivilianum against selected phytopathogens. PNAS India Sect B Biol Sci. https://doi.org/10.1007/s40011-017-0924-2

    Article  Google Scholar 

  9. Chowdhary K, Kaushik N (2018) Biodiversity study and potential of fungal endophytes of peppermint and effect of their extract on chickpea rot pathogens. Arch Phytopathol Plant Prot 51(3–4):139–155

    Article  Google Scholar 

  10. Chowdhary K, Sharma S (2017) Potential of fungal endophytes in plant growth and disease management. In: Singh D, Singh H, Prabha R (eds) Plant–microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 275–290

    Chapter  Google Scholar 

  11. Gherbawy YA, Elhariry HM (2014) Endophytic fungi associated with high-altitude Juniperus trees and their antimicrobial activities. Plant Biosyst. https://doi.org/10.1080/11263504.2014.984011

    Article  Google Scholar 

  12. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  13. Kaul S, Ahmed M, Zargar K, Sharma P, Dhar MK (2013) Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh. (foxglove) as a novel source of digoxin: a cardiac glycoside. 3 Biotech 3(4):335–340

    Article  PubMed  Google Scholar 

  14. Kaur S, Dhillon GS, Brar SK, Vallad GE, Chand R, Chauhan VB (2012) Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Crit Rev Microbiol 38(2):136–151. https://doi.org/10.3109/1040841X.2011.640977

    Article  CAS  PubMed  Google Scholar 

  15. Khan SN (2007) Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopath 5(2):111–118

    Google Scholar 

  16. Khan AL, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13(1):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Korejo F, Ali SA, Shafique HA, Sultana V, Ara J, Syed E-H (2013) Antifungal and antibacterial activity of endophytic Penicillium sp. isolated from Salvadora sp. Pak J Bot 46(6):2313–2318

    Google Scholar 

  18. Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS ONE 8(2):e56202. https://doi.org/10.1371/journal.pone.0056202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar S, Kaushik N, Edrada-Ebel R, Ebel R, Proksch P (2011) Isolation, characterization, and bioactivity of endophytic fungi of Tylophora indica. World J Microbiol Biotechnol 27(3):571–577. https://doi.org/10.1007/s11274-010-0492-6

    Article  Google Scholar 

  20. Rajeshwar Y, Sreekanth T, Narasimha K (2014) Free radical scavenging and antifungal activity of Asparagus racemosus root extract—an in vitro study. Int J Pharm Edu Res 1(1):57–60

    Google Scholar 

  21. Rodriguez Estrada AE, Jonkers W, Kistler HC, May G (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet Biol 49(7):578–587. https://doi.org/10.1016/j.fgb.2012.05.001

    Article  PubMed  Google Scholar 

  22. Rodriguez RJ, White JF Jr, Arnold AE, Redman ARA (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  23. Rosado-Álvarez C, Molinero-Ruiz L, Rodríguez-Arcos R, Basallote-Ureba MJ (2014) Antifungal activity of asparagus extracts against phytopathogenic Fusarium oxysporum. Sci Hortic 171:51–57

    Article  Google Scholar 

  24. Singh R, Mani VP, Khandelwal RS, Ram L, Srivastava RP (2014) Screening of maize genotypes against southern corn leaf blight. The Bioscan (Suppl Genet Plant Breed) 9(2):859–862. https://doi.org/10.1016/j.jssas.2015.06.006

    Article  Google Scholar 

  25. Soltani J, Hosseyni Moghaddam MS (2014) Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens. Curr Microbiol 70(4):580–586. https://doi.org/10.1007/s00284-014-0753-y

    Article  CAS  PubMed  Google Scholar 

  26. Sun X, Ding Q, Hyde KD, Guo LD (2012) Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecol 5(5):624–632

    Article  Google Scholar 

  27. Ul-Hassan SR, Strobel GA, Booth E, Knighton B, Floerchinger C, Sears J (2012) Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. CI-4. Microbiology 158(2):465–473. https://doi.org/10.1099/mic.0.054643-0

    Article  CAS  PubMed  Google Scholar 

  28. U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Elizabeth Arnold A (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99(5):898–914. https://doi.org/10.3732/ajb.1100459

    Article  PubMed  Google Scholar 

  29. Yuan ZL, Zhang CL, Lin FC (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29(1):116–126

    Article  CAS  Google Scholar 

  30. Zhang W, Wei W, Shi J, Chen C, Zhao G, Jiao R, Tan R (2015) Natural phenolic metabolites from endophytic Aspergillus sp IFB-YXS with antimicrobial activity. Biorg Med Chem Lett 25(13):2698–2701. https://doi.org/10.1016/j.bmcl.2015.04.044

    Article  CAS  Google Scholar 

  31. Zheng LP, Zhang Z, Xie LQ, Yuan HY, Zhang YQ (2013) Antifungal activity of endophyte cultures of Morus alba L. against phytopathogenic fungi. Adv Mater Res 641–642:615–618. https://doi.org/10.4028/www.scientific.net/AMR.641-642.615

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Both the authors acknowledge facilities provided by TERI, IHC. Kanika Chowdhary acknowledges CSIR-India fellowships under EMR scheme (09/550 (0037)2009-EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutan Kaushik.

Ethics declarations

Conflict of interest

The authors declare no existence of any conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhary, K., Kaushik, N. Diversity and Antifungal Activity of Fungal Endophytes of Asparagus racemosus Willd. Agric Res 8, 27–35 (2019). https://doi.org/10.1007/s40003-018-0341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-018-0341-7

Keywords

Navigation