Skip to main content
Log in

Thrombospondin-2 Couples Pressure-Promoted Chondrogenesis through NF-κB Signaling

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

Our previous studies found that the mechanical stimulation promote chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), along with up-regulation of thrombospondin-2 (TSP-2). The aim of this study was to explore the effect of thrombospondin-2 (TSP-2) on the mechanical pressure-stimulated chondrogenic differentiation of BMSCs and the possible role of NF-κB signaling in the mechano-chemical coupling regulation toward chondrogenesis.

METHODS:

Rat BMSCs were isolated, cultured and identified. The time-dependent expressions of TSP-2 and Sox9 in BMSCs under a dynamic mechanical pressure of 0–120 kPa at 0.1 Hz for 1 h were tested by qPCR and Western blotting. The role of TSP-2 in chondrogenic differentiation of BMSCs under mechanical pressure was validated by using small interfering RNA. The impact of TSP-2 and mechanical pressure on chondrogenesis were detected and the downstream signaling molecules were explored using Western blotting.

RESULTS:

Mechanical pressure stimulation of 0–120 kPa for 1 h significantly upregulated the expression of TSP-2 in BMSCs. The expression of the chondrogenesis markers Sox9, Aggrecan, and Col-II were all upregulated under dynamic mechanical pressure or TSP-2 stimulation. Additional exogenous TSP-2 may potentiate the chondrogenic effect of mechanical stimulation. After knock down TSP-2, the upregulation of Sox9, Aggrecan and Col-II under mechanical pressure was inhibited. The NF-κB signaling pathway responded to both dynamic pressure and TSP-2 stimulation, and the cartilage-promoting effect was blocked by an NF-κB signaling inhibitor.

CONCLUSION:

TSP-2 plays an essential role in the chondrogenic differentiation of BMSCs under mechanical pressure. NF-κB signaling is involved in the mechano-chemical coupling of TSP-2 and mechanical pressure for the chondrogenic differentiation of BMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao W, Lin W, Cai H, Chen Y, Man Y, Liang J, et al. Dynamic mechanical loading facilitated chondrogenic differentiation of rabbit BMSCs in collagen scaffolds. Regen Biomater. 2019;6:99–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schätti O, Grad S, Goldhahn J, Salzmann G, Li Z, Alini M, et al. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cells Mater. 2011;22:214–25.

    Google Scholar 

  3. Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol. 2019;15:550–70.

    PubMed  PubMed Central  Google Scholar 

  4. Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage. 2013;21:1824–33.

    CAS  PubMed  Google Scholar 

  5. Elder BD, Athanasiou KA. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev. 2009;15:43–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin W, Zhao Y, Cheng B, Zhao H, Miao L, Li Q, et al. NMDAR and JNK activation in the spinal trigeminal nucleus caudalis contributes to masseter hyperalgesia induced by stress. Front Cell Neurosci. 2019;13:495.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bornstein P, Armstrong LC, Hankenson KD, Kyriakides TR, Yang Z. Thrombospondin 2, a matricellular protein with diverse functions. Matrix Biol. 2000;19:557–68.

    CAS  PubMed  Google Scholar 

  8. de Fraipont F, Nicholson AC, Feige JJ, Van Meir EG. Thrombospondins and tumor angiogenesis. Trends Mol Med. 2001;7:401–7.

    PubMed  Google Scholar 

  9. Stenina-Adognravi O. Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol. 2014;37:69–82.

    CAS  PubMed  Google Scholar 

  10. Kyriakides TR, Zhu YH, Yang Z, Bornstein P. The distribution of the matricellular protein thrombospondin 2 in tissues of embryonic and adult mice. J Histochem Cytochem. 1998;46:1007–15.

    CAS  PubMed  Google Scholar 

  11. Jeong SY, Ha J, Lee M, Jin HJ, Kim DH, Choi SJ, et al. Autocrine action of thrombospondin-2 determines the chondrogenic differentiation potential and suppresses hypertrophic maturation of human umbilical cord blood-derived mesenchymal stem cells. Stem Cells. 2015;33:3291–303.

    CAS  PubMed  Google Scholar 

  12. Jeong SY, Kim DH, Ha J, Jin HJ, Kwon SJ, Chang JW, et al. Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells. 2013;31:2136–48.

    CAS  PubMed  Google Scholar 

  13. Shin K, Cha Y, Ban YH, Seo DW, Choi EK, Park D, et al. Anti-osteoarthritis effect of a combination treatment with human adipose tissue-derived mesenchymal stem cells and thrombospondin 2 in rabbits. World J Stem Cells. 2019;11:1115–29.

    PubMed  PubMed Central  Google Scholar 

  14. Wang S, Hu T, Wang Z, Li N, Zhou L, Liao L, et al. Macroglia-derived thrombospondin 2 regulates alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure. PLoS One. 2017;12: e0185388.

    PubMed  PubMed Central  Google Scholar 

  15. Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26:203–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl). 2004;82:434–48.

    CAS  PubMed  Google Scholar 

  17. Caron MM, Emans PJ, Surtel DA, Cremers A, Voncken JW, Welting TJ, et al. Activation of NF-κB/p65 facilitates early chondrogenic differentiation during endochondral ossification. PLoS One. 2012;7: e33467.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu JF, Chen PC, Chang TM, Hou CH. Thrombospondin-2 stimulates MMP-9 production and promotes osteosarcoma metastasis via the PLC, PKC, c-Src and NF-κB activation. J Cell Mol Med. 2020;24:12826–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan BK, Adya R, Chen J, Farhatullah S, Heutling D, Mitchell D, et al. Metformin decreases angiogenesis via NF-kappaB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res. 2009;83:566–74.

    CAS  PubMed  Google Scholar 

  20. De Stefano D, Nicolaus G, Maiuri MC, Cipolletta D, Galluzzi L, Cinelli MP, et al. NF-kappaB blockade upregulates Bax, TSP-1, and TSP-2 expression in rat granulation tissue. J Mol Med (Berl). 2009;87:481–92.

    CAS  PubMed  Google Scholar 

  21. Hahn C, Orr AW, Sanders JM, Jhaveri KA, Schwartz MA. The subendothelial extracellular matrix modulates JNK activation by flow. Circ Res. 2009;104:995–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shan S, Fang B, Zhang Y, Wang C, Zhou J, Niu C, et al. Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway. FASEB J. 2019;33:13254–66.

    CAS  PubMed  Google Scholar 

  23. Cheng B, Liu Y, Zhao Y, Li Q, Liu Y, Wang J, et al. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci Rep. 2019;9:12642–52.

    PubMed  PubMed Central  Google Scholar 

  24. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338:917–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hodgkinson T, Kelly DC, Curtin CM, O’Brien FJ. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol. 2022;18:67–84.

    PubMed  Google Scholar 

  26. Kefauver JM, Ward AB, Patapoutian A. Discoveries in structure and physiology of mechanically activated ion channels. Nature. 2020;587:567–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith RM, Reilly GC. Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J. 2012;2:169–80.

    Google Scholar 

  28. Luo L, Foster NC, Man KL, Brunet M, Hoey DA, Cox SC, et al. Hydrostatic pressure promotes chondrogenic differentiation and microvesicle release from human embryonic and bone marrow stem cells. Biotechnol J. 2022;17:e2100401.

    PubMed  Google Scholar 

  29. Zeng Y, Feng S, Liu W, Fu Q, Li Y, Li X, et al. Preconditioning of mesenchymal stromal cells toward nucleus pulposus-like cells by microcryogels-based 3D cell culture and syringe-based pressure loading system. J Biomed Mater Res B Appl Biomater. 2017;105:507–20.

    CAS  PubMed  Google Scholar 

  30. Yue D, Zhang M, Lu J, Zhou J, Bai Y, Pan J. The rate of fluid shear stress is a potent regulator for the differentiation of mesenchymal stem cells. J Cell Physiol. 2019;234:16312–9.

    CAS  PubMed  Google Scholar 

  31. Zhang M, Ono T, Chen Y, Lv X, Wu S, Song H, et al. Effects of condylar elastic properties to temporomandibular joint stress. J Biomed Biotechnol. 2009;2009:509848.

    PubMed  PubMed Central  Google Scholar 

  32. Zhao YH, Lv X, Liu YL, Zhao Y, Li Q, Chen YJ, et al. Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: The roles of RhoA and Rac1. Stem Cell Res. 2015;14:283–96.

    CAS  PubMed  Google Scholar 

  33. Zhao Y, Yi FZ, Zhao YH, Chen YJ, Ma H, Zhang M. The distinct effects of estrogen and hydrostatic pressure on mesenchymal stem cells differentiation: involvement of estrogen receptor signaling. Ann Biomed Eng. 2016;44:2971–83.

    PubMed  Google Scholar 

  34. Cheng B, Liu Y, Zhao Y, Li Q, Liu Y, Wang J, et al. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci Rep. 2019;9:12642.

    PubMed  PubMed Central  Google Scholar 

  35. Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, et al. Restoration of articular cartilage. J Bone Joint Surg Am. 2014;96:336–44.

    PubMed  Google Scholar 

  36. Zhou M, Lozano N, Wychowaniec JK, Hodgkinson T, Richardson SM, Kostarelos K, et al. Graphene oxide: a growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater. 2019;96:271–80.

    CAS  PubMed  Google Scholar 

  37. Zhen G, Guo Q, Li Y, Wu C, Zhu S, Wang R, et al. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat Commun. 2021;12:1706.

    PubMed  PubMed Central  Google Scholar 

  38. Song H, Park KH. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 2020;67:12–23.

    CAS  PubMed  Google Scholar 

  39. Haseeb A, Kc R, Angelozzi M, de Charleroy C, Rux D, Tower RJ, et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci U S A. 2021;118: e2019152118.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Caamaño J, Hunter CA. NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev. 2002;15:414–29.

    PubMed  PubMed Central  Google Scholar 

  41. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.

    PubMed  PubMed Central  Google Scholar 

  42. Ilchovska DD, Barrow DM. An Overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL and related nutritional interventions. Autoimmun Rev. 2021;20:102741.

    CAS  PubMed  Google Scholar 

  43. De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2015;34:3493–503.

    PubMed  Google Scholar 

  44. Jimi E, Fei H, Nakatomi C. NF-κB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci. 2019;20:6275.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. De Luca F. Regulatory role of NF-κB in growth plate chondrogenesis and its functional interaction with Growth Hormone. Mol Cell Endocrinol. 2020;514:110916.

    PubMed  Google Scholar 

  46. Novack DV. Role of NF-κB in the skeleton. Cell Res. 2011;21:169–82.

    CAS  PubMed  Google Scholar 

  47. Wu S, Morrison A, Sun H, De Luca F. Nuclear factor-kappaB (NF-kappaB) p65 interacts with Stat5b in growth plate chondrocytes and mediates the effects of growth hormone on chondrogenesis and on the expression of insulin-like growth factor-1 and bone morphogenetic protein-2. J Biol Chem. 2011;286:24726–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hou CH, Tang CH, Chen PC, Liu JF. Thrombospondin 2 promotes IL-6 production in osteoarthritis synovial fibroblasts via the PI3K/AKT/NF-κB pathway. J Inflamm Res. 2021;14:5955–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen X, Liu Y, Ding W, Shi J, Li S, Liu Y, et al. Mechanical stretch-induced osteogenic differentiation of human jaw bone marrow mesenchymal stem cells (hJBMMSCs) via inhibition of the NF-κB pathway. Cell Death Dis. 2018;9:207.

    PubMed  PubMed Central  Google Scholar 

  50. Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF-κB: at the borders of autoimmunity and inflammation. Front Immunol. 2021;12:716469.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.

    CAS  PubMed  Google Scholar 

  52. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8:227–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Miao X, Yuan J, Wu J, Zheng J, Zheng W, Wang F, et al. Bone morphogenetic protein-2 promotes osteoclasts-mediated osteolysis via Smad1 and p65 signaling pathways. Spine (Phila Pa 1976) 2021;46:E234–42.

  54. Ushita M, Saito T, Ikeda T, Yano F, Higashikawa A, Ogata N, et al. Transcriptional induction of SOX9 by NF-kappaB family member RelA in chondrogenic cells. Osteoarthritis Cartilage. 2009;17:1065–75.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (81901052, 31971248) and the Shaanxi Science and Technology Innovation Team Project (2021TD-46).

Author information

Authors and Affiliations

Authors

Contributions

MZ and YZ conceived and supervised this project. JN, FF, SZ and YZ performed the cell culture and biochemical assays. RS and JL conducted the biomechanical experiments. LZ and HW performed the protein analysis. All authors analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Ying Zhao or Min Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical statement

All animal procedures performed in this study were reviewed and approved by the Animal Experimental Ethical Inspection of Fourth Military Medical University (No. 2018023) and were performed in accordance with the guidelines of the International Association for the Study of Pain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 15282 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Feng, F., Zhang, S. et al. Thrombospondin-2 Couples Pressure-Promoted Chondrogenesis through NF-κB Signaling. Tissue Eng Regen Med 20, 753–766 (2023). https://doi.org/10.1007/s13770-023-00548-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00548-7

Keywords

Navigation