Skip to main content
Log in

Research Progress of Three-Dimensional Bioprinting Artificial Cardiac Tissue

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Cardiovascular disease is one of the main diseases that endanger human life and health, and heart failure often occurs when the cardiovascular disease develops to the end-stage. Heart transplantation is the most effective treatment. However, there has always been a shortage of living heart organs. With the development of regenerative medicine, researchers have turned to bioprinting technology that can build tissues and organs in vitro. A large number of relevant literature on three-dimensional (3D) bioprinted hearts were searched and screened in Google Scholar. 3D bioprinting technology can accurately print biomaterials containing living cells into 3D functional living tissues, providing a feasible solution to the shortage of transplantable organs. As one of the most important organs in the human body, the research on 3D bioprinting of the heart has currently become a hot topic. This paper briefly overviews 3D bioprinting technology and the progress in bioprinting cardiac tissue. It is believed that in the future, bio-printed hearts will become a reality, making a new way of providing artificial organs for heart transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Worth CL, Lindberg EL, et al. Cells of the adult human heart. Nature. 2020;588:466–72.

    Article  CAS  Google Scholar 

  2. Weir RA, McMurray JJ. Epidemiology of heart failure and left ventricular dysfunction after acute myocardial infarction. Curr Heart Fail Rep. 2006;3:175–80.

    Article  Google Scholar 

  3. Black CK, Termanini KM, Aguirre O, Hawksworth JS, Sosin M. Solid organ transplantation in the 21st century. Ann Transl Med. 2018;6:409.

    Article  Google Scholar 

  4. Goldraich LA, Leitão SAT, Scolari FL, Marcondes-Braga FG, Bonatto MG, Munyal D, et al. A comprehensive and contemporary review on immunosuppression therapy for heart transplantation. Curr Pharm Des. 2020;26:3351–84.

    Article  CAS  Google Scholar 

  5. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article  CAS  Google Scholar 

  6. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D Printing and its future directions. JACC Cardiovasc Imaging. 2017;10:171–84.

    Article  Google Scholar 

  7. Costello JP, Olivieri LJ, Krieger A, Thabit O, Marshall MB, Yoo SJ, et al. Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J Pediatr Congenit Heart Surg. 2014;5:421–6.

    Article  Google Scholar 

  8. Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7:6–9.

    Article  Google Scholar 

  9. Olejnik P, Juskanic D, Patrovic L, Halaj M. First printed 3D heart model based on cardiac magnetic resonance imaging data in Slovakia. Bratisl Lek Listy. 2018;119:781–4.

    CAS  Google Scholar 

  10. Farooqi KM, Gonzalez-Lengua C, Shenoy R, Sanz J, Nguyen K. Use of a three dimensional printed cardiac model to assess suitability for biventricular repair. World J Pediatr Congenit Heart Surg. 2016;7:414–6.

    Article  Google Scholar 

  11. Guo HC, Wang Y, Dai J, Ren CW, Li JH, Lai YQ. Application of 3D printing in the surgical planning of hypertrophic obstructive cardiomyopathy and physician-patient communication: a preliminary study. J Thorac Dis. 2018;10:867–73.

    Article  Google Scholar 

  12. Biglino G, Koniordou D, Gasparini M, Capelli C, Leaver LK, Khambadkone S, et al. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations. Pediatr Cardiol. 2017;38:813–8.

    Article  Google Scholar 

  13. Li BY, Meng D. Research progress of 3D bioprinting in bone tissue engineering. Chin J Prosthod. 2021. https://doi.org/10.19748/j.cn.kqxf.1009-3761.2021.02.014.

  14. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6:915–46.

    Article  CAS  Google Scholar 

  15. Kato B, Wisser G, Agrawal DK, Wood T, Thankam FG. 3D bioprinting of cardiac tissue: current challenges and perspectives. J Mater Sci Mater Med. 2021;32:54.

    Article  CAS  Google Scholar 

  16. Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B. 3D Bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res. 2019;211:64–83.

    Article  Google Scholar 

  17. Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.

    Article  CAS  Google Scholar 

  18. Xia Z, Jin S, Ye K. Tissue and organ 3D bioprinting. SLAS Technol. 2018;23:301–14.

    Article  CAS  Google Scholar 

  19. Jorgensen AM, Yoo JJ, Atala A. Solid organ bioprinting: Strategies to achieve organ function. Chem Rev. 2020;120:11093–10127.

    Article  CAS  Google Scholar 

  20. Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the biologist. Cell. 2021;184:18–32.

    Article  CAS  Google Scholar 

  21. Agarwal T, Fortunato GM, Hann SY, Ayan B, Vajanthri KY, Presutti D, et al. Recent advances in bioprinting technologies for engineering cardiac tissue. Mater Sci Eng C Mater Biol Appl. 2021;124:112057.

    Article  CAS  Google Scholar 

  22. Yan ZW, Li SF, Li A, Zhang F, Zhao WD, Li JY, et al. Research progress in application of 3D bio-printing technology in tissue engineering and organ transplantation. J Jilin University (Med Edn). 2019;45:197–201.

    Google Scholar 

  23. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536.

    Article  CAS  Google Scholar 

  24. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2006;14:271.

    Article  Google Scholar 

  25. Wang CW, Zhang M, Yan LL, Xia PB, Liu NN, Li DJ, et al. Application of hydrogel-based 3D bioprinting in histological engineering. China Rubber/Plastics Technol Equip. 2022;48:37–42.

    Google Scholar 

  26. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cell. 2007;26:127–34.

    Article  Google Scholar 

  27. Xu C, Christensen K, Zhang Z, Huang Y, Fu J, Markwald RR. Predictive compensation-enabled horizontal inkjet printing of alginate tubular constructs. Manuf Lett. 2013;1:28–32.

    Article  CAS  Google Scholar 

  28. Liu F, Liu C, Chen Q, Ao Q, Tian X, Fan J, et al. Progress in organ 3D bioprinting. Int J Bioprint. 2008;4:128.

    Google Scholar 

  29. Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication. 2009;1:035001.

    Article  Google Scholar 

  30. Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering. 2019;5:777–94.

    Article  CAS  Google Scholar 

  31. Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials. 2011;32:9218–30.

    Article  CAS  Google Scholar 

  32. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–43.

    Article  CAS  Google Scholar 

  33. Serpooshan V, Mahmoudi M, Hu DA, Hu JB, Wu SM. Bioengineering cardiac constructs using 3D printing. J 3D Print Med. 2017;1:123–39.

    Article  CAS  Google Scholar 

  34. Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017;6:1601118.

  35. Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, et al. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater. 2021;6:1388–401.

    Article  CAS  Google Scholar 

  36. Bejleri D, Davis ME. Decellularized extracellular matrix materials for cardiac repair and regeneration. Adv Healthc Mater. 2019;8:e1801217.

    Article  Google Scholar 

  37. Parak A, Pradeep P, du Toit LC, Kumar P, Choonara YE, Pillay V. Functionalizing bioinks for 3D bioprinting applications. Drug Discov Today. 2019;24:198–205.

    Article  CAS  Google Scholar 

  38. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation. 2020;141:e139–596.

    Article  Google Scholar 

  39. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296–332.

    Article  CAS  Google Scholar 

  40. Wu CY, Wu JH, Wu ZR, Li XG, Huang JJ, Chen MJ. New progress of biological 3D printing technology. J Mech Eng. 2021;57:114–32.

    Article  Google Scholar 

  41. Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4:035005.

    Article  CAS  Google Scholar 

  42. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101:1255–64.

    Article  Google Scholar 

  43. Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018;70:48–56.

    Article  CAS  Google Scholar 

  44. Bejleri D, Streeter BW, Nachlas ALY, Brown ME, Gaetani R, Christman KL, et al. A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater. 2018;7:e1800672.

    Article  Google Scholar 

  45. Tao ZW, Mohamed M, Jacot JG, Birla RK. Bioengineering cardiac tissue constructs with adult rat cardiomyocytes. ASAIO J. 2018;64:e105–14.

    Article  CAS  Google Scholar 

  46. Noguchi R, Nakayama K, Itoh M, Kamohara K, Furukawa K, Oyama JI, et al. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transplant. 2016;35:137–45.

    Article  Google Scholar 

  47. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30:2164–2074.

    Article  CAS  Google Scholar 

  48. Atmanli A, Domian IJ. Generation of aligned functional myocardial tissue through microcontact printing. J Vis Exp. 2013. https://doi.org/10.3791/50288.

    Article  Google Scholar 

  49. Ong CS, Fukunishi T, Zhang H, Huang CY, Nashed A, Blazeski A, et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep. 2017;7:4566.

    Article  Google Scholar 

  50. Arai K, Murata D, Verissimo AR, Mukae Y, Itoh M, Nakamura A, et al. Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLoS One. 2018;13:e0209162.

    Article  CAS  Google Scholar 

  51. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25:3707–15.

    Article  CAS  Google Scholar 

  52. Varghese D, Deshpande M, Xu T, Kesari P, Ohri S, Boland T. Advances in tissue engineering: cell printing. J Thorac Cardiovasc Surg. 2005;129:470–2.

    Article  Google Scholar 

  53. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580–8.

    CAS  Google Scholar 

  54. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–9.

    Article  Google Scholar 

  55. Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng. 2021;5:010904.

    Article  Google Scholar 

  56. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue H-J, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1:e1500758.

    Article  Google Scholar 

  57. Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN, Feinberg AW. FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng. 2020;6:6453–9.

    Article  CAS  Google Scholar 

  58. Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365:482–7.

    Article  CAS  Google Scholar 

  59. Thilmany J. 6 advances in 3D bioprinting of living tissue. ASME. 2020. https://www.asme.org/topics-resources/content/6-advances-in-3d-bioprinting-of-living-tissue

  60. Cohrs NH, Petrou A, Loepfe M, Yliruka M, Schumacher CM, Kohll AX, et al. A soft total artificial heart-first concept evaluation on a hybrid mock circulation. Artif Organs. 2017;41:948–58.

    Article  CAS  Google Scholar 

  61. Kupfer ME, Lin WH, Ravikumar V, Qiu K, Wang L, Gao L, et al. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted Chambered Organoid. Circ Res. 2020;127:207–24.

    Article  CAS  Google Scholar 

  62. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34:422–34.

    Article  CAS  Google Scholar 

  63. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci (Weinh). 2019;6:1900344.

    Article  Google Scholar 

  64. Have a heart – make a difference for animals too. BIOLIFE4D. 2019. https://biolife4d.com/about/have-a-heart-make-a-difference-for-animals-too/

  65. Lee S, Sani ES, Spencer AR, Guan Y, Weiss AS, Annabi N. Human-recombinant-elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv Mater. 2020;32:e2003915.

    Article  Google Scholar 

  66. Zhang Z, Wu C, Dai C, Shi Q, Fang G, Xie D, et al. A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication. Bioactive Materials. 2022;18:138–50.

    Article  Google Scholar 

  67. Huang WH. Frontier hotspots and research progress on 3D bioprinting in organ reconstruction. Organ Transl. 2022;13:161.

  68. Maiullari F, Costantini M, Milan M, Pace V, Chirivi M, Maiullari S, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep. 2018;8:13532.

    Article  Google Scholar 

  69. Park BW, Jung SH, Das S, Lee SM, Park JH, Kim H, et al. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor-engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci Adv. 2020;6:eaay6994-eaay.

  70. Gaetani R, Feyen DA, Verhage V, Slaats R, Messina E, Christman KL, et al. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 2015;61:339–48.

    Article  CAS  Google Scholar 

  71. Anil Kumar S, Alonzo M, Allen SC, Abelseth L, Thakur V, Akimoto J, et al. A visible light-cross-linkable, fibrin-gelatin-based bioprinted construct with human cardiomyocytes and fibroblasts. ACS Biomater Sci Eng. 2019;5:4551–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhehui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Wang, Z. Research Progress of Three-Dimensional Bioprinting Artificial Cardiac Tissue. Tissue Eng Regen Med 20, 1–9 (2023). https://doi.org/10.1007/s13770-022-00495-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00495-9

Keywords

Navigation