Skip to main content
Log in

Enhancing the Angiogenic and Proliferative Capacity of Dermal Fibroblasts with Mulberry (Morus alba. L) Root Extract

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Enhancing blood flow and cell proliferation in the hair dermis is critical for treating hair loss. This study was designed to aid the development of alternative and effective solutions to overcome alopecia. Specifically, we examined the effects of Morus alba. L root extract (MARE, which has been used in traditional medicine as a stimulant for hair proliferation) on dermal fibroblasts and other cell types found in the epidermis.

Methods:

We first optimized the concentration of MARE that could be used to treat human dermal fibroblasts (HDFs) without causing cytotoxicity. After optimization, we focused on the effect of MARE on HDFs since these cells secrete paracrine factors related to cell proliferation and angiogenesis that affect hair growth. Conditioned medium (CM) derived from MARE-treated HDFs (MARE HDF-CM) was used to treat human umbilical vein endothelial cells (HUVECs) and hair follicle dermal papilla cells (HFDPCs).

Results:

Concentrations of MARE up to 20 wt% increased the expression of proliferative and anti-apoptotic genes in HDFs. MARE HDF-CM significantly improved the tubular structure formation and migration capacity of HUVECs. Additionally, MARE HDF-CM treatment upregulated the expression of hair growth-related genes in HFDPCs. CM collected from MARE-treated HDFs promoted the proliferation of HFDPCs and the secretion of angiogenic paracrine factors from these cells.

Conclusion:

Since it can stimulate the secretion of pro-proliferative and pro-angiogenic paracrine factors from HDFs, MARE has therapeutic potential as a hair loss preventative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M, Horowitz M, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146:761–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, Banasiak Ł, Placek W, Maksymowicz W, et al. Therapeutic potential of stem cells in follicle regeneration. Stem Cells Int. 2018;2018:1049641.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McClellan KJ, Markham A. Finasteride: a review of its use in male pattern hair loss. Drugs. 1999;57:111–26.

    Article  CAS  PubMed  Google Scholar 

  4. Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004;150:186–94.

    Article  CAS  PubMed  Google Scholar 

  5. Kavitha Y, Geetha A. Anti-inflammatory and preventive activity of white mulberry root bark extract in an experimental model of pancreatitis. J Tradit Complement Med. 2018;8:497–505.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hyun J, Im J, Kim SW, Kim HY, Seo I, Bhang SH. Morus alba root extract induces the anagen phase in the human hair follicle dermal papilla cells. Pharmaceutics. 2021;13:1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ji S, Zhu Z, Sun X, Fu X. Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther. 2021;6:66.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xiao S, Deng Y, Mo X, Liu Z, Wang D, Deng C, et al. Promotion of hair growth by conditioned medium from extracellular matrix/stromal vascular fraction gel in C57BL/6 mice. Stem Cells Int. 2020;2020:9054514.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Driskell RR, Clavel C, Rendl M, Watt FM. Hair follicle dermal papilla cells at a glance. J Cell Sci. 2011;124:1179–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest. 2001;107:409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining hair inductivity in human dermal papilla cells: a review of effective methods. Skin Pharmacol Physiol. 2020;33:280–92.

    Article  CAS  PubMed  Google Scholar 

  12. Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol. 2012;23:917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care (New Rochelle). 2016;5:119–36.

    Article  Google Scholar 

  14. le Riche A, Aberdam E, Marchand L, Frank E, Jahoda C, Petit I, et al. Extracellular vesicles from activated dermal fibroblasts stimulate hair follicle growth through dermal papilla-secreted norrin. Stem Cells. 2019;37:1166–75.

    Article  PubMed  Google Scholar 

  15. Nilforoushzadeh MA, Aghdami N, Taghiabadi E. Human hair outer root sheath cells and platelet-lysis exosomes promote hair inductivity of dermal papilla cell. Tissue Eng Regen Med. 2020;17:525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jo H, Gajendiran M, Kim K. Influence of PEG chain length on colloidal stability of mPEGylated polycation based coacersomes for therapeutic protein delivery. J Ind Eng Chem. 2020;82:234–42.

    Article  CAS  Google Scholar 

  17. Qin Z, Fisher GJ, Voorhees JJ, Quan T. Actin cytoskeleton assembly regulates collagen production via TGF-β type II receptor in human skin fibroblasts. J Cell Mol Med. 2018;22:4085–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quan T, Wang F, Shao Y, Rittié L, Xia W, Orringer JS, et al. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo. J Invest Dermatol. 2013;133:658–67.

    Article  CAS  PubMed  Google Scholar 

  19. Mecklenburg L, Tobin DJ, Müller-Röver S, Handjiski B, Wendt G, Peters EM, et al. Active hair growth (anagen) is associated with angiogenesis. J Invest Dermatol. 2000;114:909–16.

    Article  CAS  PubMed  Google Scholar 

  20. Cao H, Yu D, Yan X, Wang B, Yu Z, Song Y, et al. Hypoxia destroys the microstructure of microtubules and causes dysfunction of endothelial cells via the PI3K/Stathmin1 pathway. Cell Biosci. 2019;9:20.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zheng M, Jang Y, Choi N, Kim DY, Han TW, Yeo JH, et al. Hypoxia improves hair inductivity of dermal papilla cells via nuclear NADPH oxidase 4-mediated reactive oxygen species generation. Br J Dermatol. 2019;181:523–34.

    Article  CAS  PubMed  Google Scholar 

  22. Han JH, Kwon OS, Chung JH, Cho KH, Eun HC, Kim KH. Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J Dermatol Sci. 2004;34:91–8.

    Article  CAS  PubMed  Google Scholar 

  23. Rastegar H, Ahmadi Ashtiani H, Aghaei M, Ehsani A, Barikbin B. Combination of herbal extracts and platelet-rich plasma induced dermal papilla cell proliferation: involvement of ERK and Akt pathways. J Cosmet Dermatol. 2013;12:116–22.

    Article  PubMed  Google Scholar 

  24. Sriram G, Bigliardi PL, Bigliardi-Qi M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol. 2015;94:483–512.

    Article  CAS  PubMed  Google Scholar 

  25. Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell. 2011;22:3791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohyama M, Zheng Y, Paus R, Stenn KS. The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Exp Dermatol. 2010;19:89–99.

    Article  PubMed  Google Scholar 

  27. Lee A, Bae S, Lee SH, Kweon OK, Kim WH. Hair growth promoting effect of dermal papilla like tissues from canine adipose-derived mesenchymal stem cells through vascular endothelial growth factor. J Vet Med Sci. 2017;78:1811–8.

    Article  PubMed  Google Scholar 

  28. Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol. 2002;118:216–25.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou L, Wang H, Jing J, Yu L, Wu X, Lu Z. Regulation of hair follicle development by exosomes derived from dermal papilla cells. Biochem Biophys Res Commun. 2018;500:325–32.

    Article  CAS  PubMed  Google Scholar 

  30. Hamburg-Shields E, DiNuoscio GJ, Mullin NK, Lafyatis R, Atit RP. Sustained β-catenin activity in dermal fibroblasts promotes fibrosis by up-regulating expression of extracellular matrix protein-coding genes. J Pathol. 2015;235:686–97.

    Article  CAS  PubMed  Google Scholar 

  31. Canady J, Arndt S, Karrer S, Bosserhoff AK. Increased KGF expression promotes fibroblast activation in a double paracrine manner resulting in cutaneous fibrosis. J Invest Dermatol. 2013;133:647–57.

    Article  CAS  PubMed  Google Scholar 

  32. Ye J, Tang X, Long Y, Chu Z, Zhou Q, Lin B. The effect of hypoxia on the proliferation capacity of dermal papilla cell by regulating lactate dehydrogenase. J Cosmet Dermatol. 2021;20:684–90.

    Article  PubMed  Google Scholar 

  33. Goldman BE, Fisher DM, Ringler SL. Transcutaneous PO2 of the scalp in male pattern baldness: a new piece to the puzzle. Plast Reconstr Surg. 1996;97:1109–16.

    Article  CAS  PubMed  Google Scholar 

  34. Kato H, Kinoshita K, Saito N, Kanayama K, Mori M, Asahi N, et al. The effects of ischemia and hyperoxygenation on hair growth and cycle. Organogenesis. 2020;16:83–94.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Klemp P, Peters K, Hansted B. Subcutaneous blood flow in early male pattern baldness. J Invest Dermatol. 1989;92:725–6.

    Article  CAS  PubMed  Google Scholar 

  36. Danilenko DM, Ring BD, Yanagihara D, Benson W, Wiemann B, Starnes CO, et al. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am J Pathol. 1995;147:145–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Weger N, Schlake T. Igf-I signalling controls the hair growth cycle and the differentiation of hair shafts. J Invest Dermatol. 2005;125:873–82.

    Article  CAS  PubMed  Google Scholar 

  38. Soma T, Ogo M, Suzuki J, Takahashi T, Hibino T. Analysis of apoptotic cell death in human hair follicles in vivo and in vitro. J Invest Dermatol. 1998;111:948–54.

    Article  CAS  PubMed  Google Scholar 

  39. Moon EJ, Sonveaux P, Porporato PE, Danhier P, Gallez B, Batinic-Haberle I, et al. NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc Natl Acad Sci U S A. 2010;107:20477–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang HC, Lin H, Huang MC. Lactoferrin promotes hair growth in mice and increases dermal papilla cell proliferation through Erk/Akt and Wnt signaling pathways. Arch Dermatol Res. 2019;311:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hino S, Tanji C, Nakayama KI, Kikuchi A. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol. 2005;25:9063–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2021R1A4A1032782). This research was also supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2018M3A9E2023255 and NRF-2019R1C1C1007384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Ho Bhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

There were no animal or human subject experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, J., Hyun, J., Kim, SW. et al. Enhancing the Angiogenic and Proliferative Capacity of Dermal Fibroblasts with Mulberry (Morus alba. L) Root Extract. Tissue Eng Regen Med 19, 49–57 (2022). https://doi.org/10.1007/s13770-021-00404-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00404-6

Keywords

Navigation