Skip to main content
Log in

Inhibitory Effect of Topical Cartilage Acellular Matrix Suspension Treatment on Neovascularization in a Rabbit Corneal Model

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

The extracellular matrix (ECM) of articular cartilage has an inhibitory effect on vascularization, yet clinical utilization has been technically challenging. In this study, we aimed to fabricate a biologically functional ECM powder suspension from porcine articular cartilage that inhibits neovascularization (NV).

Methods:

The digested-cartilage acellular matrix (dg-CAM) was prepared by sequential processes of decellularization, enzymatic digestion and pulverization. Physicochemical properties of dg-CAM were compared with that of native cartilage tissue (NCT). Cellular interactions between human umbilical vein endothelial cells (HUVECs) and dg-CAM was evaluated with proliferation, migration and tube formation assays compared with that of type I collagen (COL) and bevacizumab, an anti-angiogenic drug. We then investigated the therapeutic potential of topical administration of dg-CAM suspension on the experimentally induced rabbit corneal NV model.

Results:

The dg-CAM released a significantly larger amount of soluble proteins than that of the NCT and showed an improved hydrophilic and dispersion properties. In contrast, the dg-CAM contained a large amount of collagen, glycosaminoglycans and anti-angiogenic molecules as much as the NCT. The inhibitory effect on NV of the dg-CAM was more prominent than that of COL and even comparable to that of bevacizumab in inhibiting the HUVECs. The therapeutic potential of the dg-CAM was comparable to that of bevacizumab in the rabbit corneal NV model by efficiently inhibiting neovessel formation of the injured cornea.

Conclusion:

The current study developed a dg-CAM having anti-angiogenic properties, together with water-dispersible properties suitable for topical or minimally invasive application for prevention of vessel invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater. 2018;74:74–89.

    CAS  PubMed  Google Scholar 

  2. Luo JC, Chen W, Chen XH, Qin TW, Huang YC, Xie HQ, et al. A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials. 2011;32:706–13.

    CAS  PubMed  Google Scholar 

  3. Agrawal V, Tottey S, Johnson SA, Freund JM, Siu BF, Badylak SF. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng Part A. 2011;17:2435–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huleihel L, Bartolacci JG, Dziki JL, Vorobyov T, Arnold B, Scarritt ME, et al. Matrix-bound nanovesicles recapitulate extracellular matrix effects on macrophage phenotype. Tissue Eng Part A. 2017;23:1283–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Patra D, Sandell LJ. Antiangiogenic and anticancer molecules in cartilage. Expert Rev Mol Med. 2012;14:e10.

    CAS  PubMed  Google Scholar 

  6. Eisenstein R, Sorgente N, Soble LW, Miller A, Kuettner KE. The resistance of certain tissues to invasion: penetration of explanted tissues by vascularized mesenchyme. Am J Pathol. 1973;73:765–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brem H, Folkmant J. Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med. 1975;141:427–39.

    CAS  PubMed  Google Scholar 

  8. Chen CC, Liao CH, Wang YH, Hsu YM, Huang SH, Chang CH, et al. Cartilage fragments from osteoarthritic knee promote chondrogenesis of mesenchymal stem cells without exogenous growth factor induction. J Orthop Res. 2012;30:393–400.

    CAS  PubMed  Google Scholar 

  9. Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials. 2008;29:2378–87.

    CAS  PubMed  Google Scholar 

  10. Utomo L, Pleumeekers MM, Nimeskern L, Nürnberger S, Stok KS, Hildner F, et al. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction. Biomed Mater. 2015;10:015010.

    PubMed  Google Scholar 

  11. Hiraki Y, Inoue H, Iyama K, Kamizono A, Ochiai M, Shukunami C, et al. Identification of chondromodulin I as a novel endothelial cell growth inhibitor. J Biol Chem. 1997;272:32419–26.

    CAS  PubMed  Google Scholar 

  12. Wang Z, Bryan J, Franz C, Havlioglu N, Sandell LJ. Type IIB procollagen NH2-propeptide induces death of tumor cells via interaction with integrins αvβ3 and αvβ5. J Biol Chem. 2010;285:20806–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kobayashi T, Kakizaki I, Nozaka H, Nakamura T. Chondroitin sulfate proteoglycans from salmon nasal cartilage inhibit angiogenesis. Biochem Biophys Rep. 2017;9:72–8.

    PubMed  Google Scholar 

  14. Chlenski A, Liu S, Crawford SE, Volpert OV, DeVries GH, Evangelista A, et al. SPARC is a key schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res. 2002;62:7357–63.

    CAS  PubMed  Google Scholar 

  15. González RP, Leyva A, Moraes MO. Shark cartilage as source of antiangiogenic compounds: from basic to clinical research. Biol Pharm Bull. 2001;24:1097–101.

    PubMed  Google Scholar 

  16. Jiao B, Chen J, Miao W, Wang L, Zhu Y, Miao H. Identification and biological characterization of angiogenic and tumor growth inhibitors derived from sinica cetorhinus maximum cartilage. Mar Drugs. 2004;2:30–8.

    CAS  PubMed Central  Google Scholar 

  17. Zheng L, Ling P, Wang Z, Niu R, Hu C, Zhang T, et al. A novel polypeptide from shark cartilage with potent anti-angiogenic activity. Cancer Biol Ther. 2007;6:775–80.

    CAS  PubMed  Google Scholar 

  18. Sanz L, Álvarez-Vallina L. The extracellular matrix: a new turn-of-the-screw for anti-angiogenic strategies. Trends Mol Med. 2003;9:256–62.

    CAS  PubMed  Google Scholar 

  19. Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater. 2018;68:1–14.

    CAS  PubMed  Google Scholar 

  20. Manni ML, Czajka CA, Oury TD, Gilbert TW. Extracellular matrix powder protects against bleomycin-induced pulmonary fibrosis. Tissue Eng Part A. 2011;17:2795–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Reing JE, Zhang L, Myers-Irvin J, Cordero KE, Freytes DO, Heber-Katz E, et al. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng Part A. 2009;15:605–14.

    CAS  PubMed  Google Scholar 

  22. Sicari BM, Dziki JL, Siu BF, Medberry CJ, Dearth CL, Badylak SF. The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials. 2014;35:8605–12.

    CAS  PubMed  Google Scholar 

  23. Jung CS, Kim BK, Lee J, Min BH, Park SH. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med. 2018;15:155–62.

    CAS  PubMed  Google Scholar 

  24. Mudalal S, Babini E, Cavani C, Petracci M. Quantity and functionality of protein fractions in chicken breast fillets affected by white striping. Poult Sci. 2014;93:2108–16.

    CAS  PubMed  Google Scholar 

  25. Choi KH, Song BR, Choi BH, Lee M, Park SR, Min BH. Cartilage tissue engineering using chondrocyte-derived extracellular matrix scaffold suppressed vessel invasion during chondrogenesis of mesenchymal stem cells in vivo. Tissue Eng Regen Med. 2012;9:43–50.

    CAS  Google Scholar 

  26. DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One. 2010;5:e13039.

    PubMed  PubMed Central  Google Scholar 

  27. Kim WJ, Jeong HO, Chung SK. The effect of bevacizumab on corneal neovascularization in rabbits. Korean J Ophthalmol. 2010;24:230–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozdemir O, Altintas O, Altintas L, Ozkan B, Akdag C, Yüksel N. Comparison of the effects of subconjunctival and topical anti-VEGF therapy (bevacizumab) on experimental corneal neovascularization. Arq Bras Oftalmol. 2014;77:209–13.

    PubMed  Google Scholar 

  29. Dastjerdi MH, Al-Arfaj KM, Nallasamy N, Hamrah P, Jurkunas UV, Pineda R 2nd, et al. Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, non-comparative study. Arch Ophthalmol. 2009;127:381–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sotozono C, Ang LP, Koizumi N, Higashihara H, Ueta M, Inatomi T, et al. New grading system for the evaluation of chronic ocular manifestations in patients with Stevens–Johnson syndrome. Ophthalmology. 2007;114:1294–302.

    PubMed  Google Scholar 

  31. Yadav T, Mungray AA, Mungray AK. A comparative analysis of a TiO2 nanoparticle dispersion in various biological extracts. RSC Adv. 2015;5:64421–32.

    CAS  Google Scholar 

  32. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tantra R, Jing S, Pichaimuthu SK, Walker N, Noble J, Hackley VA. Dispersion stability of nanoparticles in ecotoxicological investigations: the need for adequate measurement tools. J Nanopart Res. 2011;13:3765–80.

    CAS  Google Scholar 

  34. Zako T, Nagata H, Terada N, Sakono M, Soga K, Maeda M. Improvement of dispersion stability and characterization of upconversion nanophosphors covalently modified with PEG as a fluorescence bioimaging probe. J Mater Sci. 2008;43:5325–30.

    CAS  Google Scholar 

  35. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems—a review (Part 2). Trop J Pharm Res. 2013;12:265–73.

    Google Scholar 

  36. Hong T, Iwashita K, Shiraki K. Viscosity control of protein solution by small solutes: a review. Curr Protein Pept Sci. 2018;19:746–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34.

    CAS  PubMed  Google Scholar 

  38. Zhong Y, Jiang A, Sun F, Xiao Y, Gu Y, Wu L, et al. A comparative study of the effects of different decellularization methods and genipin-cross-linking on the properties of tracheal matrices. Tissue Eng Regen Med. 2019;16:39–50.

    CAS  PubMed  Google Scholar 

  39. Singh S, Afara IO, Tehrani AH, Oloyede A. Effect of decellularization on the load-bearing characteristics of articular cartilage matrix. Tissue Eng Regen Med. 2015;12:294–305.

    CAS  Google Scholar 

  40. Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rothrauff BB, Coluccino L, Gottardi R, Ceseracciu L, Scaglione S, Goldoni L, et al. Efficacy of thermoresponsive, photocrosslinkable hydrogels derived from decellularized tendon and cartilage extracellular matrix for cartilage tissue engineering. J Tissue Eng Regen Med. 2018;12:e159–70.

    CAS  PubMed  Google Scholar 

  42. Neve A, Cantatore FP, Maruotti N, Corrado A, Ribatti D. Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int. 2014;2014:756078.

    PubMed  PubMed Central  Google Scholar 

  43. Boivin D, Gendron S, Beaulieu E, Gingras D, Béliveau R. The antiangiogenic agent neovastat (AE-941) induces endothelial cell apoptosis. Mol Cancer Ther. 2002;1:795–802.

    CAS  PubMed  Google Scholar 

  44. Choi BH, Choi KH, Lee HS, Song BR, Park SR, Yang JW, et al. Inhibition of blood vessel formation by a chondrocyte-derived extracellular matrix. Biomaterials. 2014;35:5711–20.

    CAS  PubMed  Google Scholar 

  45. Cunniffe GM, Díaz-payno PJ, Sheehy EJ, Critchley SE, Almeida HV, Pitacco P, et al. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues. Biomaterials. 2019;188:63–73.

    CAS  PubMed  Google Scholar 

  46. French KM, Boopathy AV, DeQuach JA, Chingozha L, Lu H, Christman KL, et al. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater. 2012;8:4357–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Crapo PM, Medberry CJ, Reing JE, Tottey S, van der Merwe Y, Jones KE, et al. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials. 2012;33:3539–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gingras D, Boivin D, Deckers C, Gendron S, Barthomeuf C, Béliveau R. Neovastat-a novel antiangiogenic drug for cancer therapy. Anticancer Drugs. 2003;14:91–6.

    CAS  PubMed  Google Scholar 

  49. Lee HS, Lee JH, Kim CE, Yang JW. Anti-neovascular effect of chondrocyte-derived extracellular matrix on corneal alkaline burns in rabbits. Graefes Arch Clin Exp Ophthalmol. 2014;252:951–61.

    CAS  PubMed  Google Scholar 

  50. Belting M. Glycosaminoglycans in cancer treatment. Thromb Res. 2014;133:S95–101.

    CAS  PubMed  Google Scholar 

  51. Delaney CE, Weagant BT, Addison CL. The inhibitory effects of endostatin on endothelial cells are modulated by extracellular matrix. Exp Cell Res. 2006;312:2476–89.

    CAS  PubMed  Google Scholar 

  52. Abdollahi A, Hlatky L, Huber PE. Endostatin: the logic of antiangiogenic therapy. Drug Resist Updat. 2005;8:59–74.

    CAS  PubMed  Google Scholar 

  53. Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. 2000;6:41–8.

    PubMed  Google Scholar 

  54. Hasselaar P, Sage EH. SPARC antagonizes the effect of basic fibroblast growth factor on the migration of bovine aortic endothelial cells. J Cell Biochem. 1992;49:272–83.

    CAS  PubMed  Google Scholar 

  55. Raines EW, Lanes TF, Iruela-arispet ML, Ross R, Sage EH. The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF) -AB and -BB and inhibits the binding of PDGF to its receptors. Proc Natl Acad Sci U S A. 1992;89:1281–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Abdelfattah NS, Amgad M, Zayed AA, Hussein H, EI-Baky NA. Molecular underpinnings of corneal angiogenesis: advances over the past decade. Int J Ophthalmol. 2016;9:768–79.

    PubMed  PubMed Central  Google Scholar 

  57. Kim SW, Ha BJ, Kim EK, Tchah H, Kim T. The Effect of topical bevacizumab on corneal neovascularization. Ophthalmology. 2008;115:e33–8.

    PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by a grant from the Korea Health Technology R&D Project (HI14C0744 and HI17C2191) through the Korea Health Industry Development Institute funded by the Ministry of Health & Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-Hyun Min.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

The animal study was approved by the Laboratory Animal Research Center of Ajou University Medical Center (No, 2013-0014) and performed according to the regulations of the ARVO statement for Ophthalmic and Visual research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, HW., Choi, B.H., Park, D.Y. et al. Inhibitory Effect of Topical Cartilage Acellular Matrix Suspension Treatment on Neovascularization in a Rabbit Corneal Model. Tissue Eng Regen Med 17, 625–640 (2020). https://doi.org/10.1007/s13770-020-00275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-020-00275-3

Keywords

Navigation