Skip to main content
Log in

The Effect of Fibronectin-Immobilized Microgrooved Titanium Substrata on Cell Proliferation and Expression of Genes and Proteins in Human Gingival Fibroblasts

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

We aimed to determine the effect of fibronectin (FN)-immobilized microgrooved titanium (Ti) on human gingival fibroblast proliferation, gene expression and protein expression.

Methods:

Photolithography was used to fabricate the microgrooved Ti, and amine funtionalization (silanization) was used for FN immobilization on titanium surfaces. Cell proliferation, gene expression and protein expression were analyzed, followed by multiple regression analysis for determining the influential factors on cell proliferation.

Results:

FN-immobilized microgrooved Ti significantly enhanced the fibroblast proliferation in various timelines of culture, among which a burst of fivefold increase is induced at 96 h of culture compared to that on the control smooth Ti. We suggest a presence of the synergistic promotion effect of microgrooves and FN immobilization on fibroblast proliferation. Through a series of analyses on the expression of various genes and proteins involved in cell adhesion and proliferation, cyclin-dependent kinase 6, cyclin D1, integrin α5, oncogene c-Src, osteonectin, paxillin and talin-2 were determined as influential factors on promoting fibroblast proliferation induced by FN-immobilized microgrooved Ti.

Conclusion:

FN-immobilized microgrooved Ti can act as an effective surface for enhancing fibroblast proliferation, and can be used for promoting soft tissue response on the connective tissue attachment zone of biomaterial surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rompen E, Domken O, Degidi M, Pontes AE, Piattelli A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: a literature review. Clin Oral Implants Res. 2006;17 Suppl 2:55–67.

    Article  PubMed  Google Scholar 

  2. Lee SW, Kim SY, Rhyu IC, Chung WY, Leesungbok R, Lee KW. Influence of microgroove dimension on cell behavior of human gingival fibroblasts cultured on titanium substrata. Clin Oral Implants Res. 2009;20:56–66.

    Article  PubMed  Google Scholar 

  3. Kim SY, Oh N, Lee MH, Kim SE, Leesungbok R, Lee SW. Surface microgrooves and acid-etching on titanium substrata alter various cell behaviors of cultured human gingival fibroblasts. Clin Oral Implants Res. 2009;20:262–72.

    Article  PubMed  Google Scholar 

  4. Lee SW, Kim SY, Lee MH, Lee KW, Leesungbok R, Oh N. Influence of etched microgrooves of uniform dimension on in vitro responses of human gingival fibroblasts. Clin Oral Implants Res. 2009;20:458–66.

    Article  PubMed  Google Scholar 

  5. Chou L, Firth JD, Uitto VJ, Brunette DM. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J Cell Sci. 1995;108:1563–73.

    CAS  PubMed  Google Scholar 

  6. Lee MH, Oh N, Lee SW, Leesungbok R, Kim SE, Yun YP, et al. Factors influencing osteoblast maturation on microgrooved titanium substrata. Biomaterials. 2010;31:3804–15.

    Article  CAS  PubMed  Google Scholar 

  7. Engvall E, Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977;20:1–5.

    Article  CAS  PubMed  Google Scholar 

  8. Middleton CA, Pendegrass CJ, Gordon D, Jacob J, Blunn GW. Fibronectin silanized titanium alloy: a bioinductive and durable coating to enhance fibroblast attachment in vitro. J Biomed Mater Res A. 2007;83:1032–8.

    Article  CAS  PubMed  Google Scholar 

  9. Shekaran A, Garcia AJ. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. Biochim Biophys Acta. 2011;1810:350–60.

    Article  CAS  PubMed  Google Scholar 

  10. Leiss M, Beckmann K, Girós A, Costell M, Fässler R. The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol. 2008;20:502–7.

    Article  CAS  PubMed  Google Scholar 

  11. Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol. 2003;19:173–206.

    Article  CAS  PubMed  Google Scholar 

  12. Zamir E, Katz BZ, Aota S, Yamada KM, Geiger B, Kam Z. Molecular diversity of cell-matrix adhesions. J Cell Sci. 1999;112:1655–69.

    CAS  PubMed  Google Scholar 

  13. Cohen M, Joester D, Geiger B, Addadi L. Spatial and temporal sequence of events in cell adhesion: from molecular recognition to focal adhesion assembly. ChemBioChem. 2004;5:1393–9.

    Article  CAS  PubMed  Google Scholar 

  14. Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008;20:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moon IS, Berglundh T, Abrahamsson I, Linder E, Lindhe J. The barrier between the keratinized mucosa and the dental implant. An experimental study in the dog. J Clin Periodontol. 1999;26:658–63.

    Article  CAS  PubMed  Google Scholar 

  16. Lee MH, Kang JH, Lee SW. The significance differential expression of genes and proteins in human primary cells caused by microgrooved biomaterial substrata. Biomaterials. 2012;33:3216–34.

    Article  CAS  PubMed  Google Scholar 

  17. Karakassides MA, Gournis D, Petridis D. An infrared reflectance study of Si–O vibrations in thermally treated alkalisaturated montmorillonites. Clay Miner. 1999;34:429–38.

    Article  CAS  Google Scholar 

  18. Meade AD, Lyng FM, Knief P, Byrne HJ. Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in vitro cultured human keratinocytes. Anal Bioanal Chem. 2007;387:1717–28.

    Article  CAS  PubMed  Google Scholar 

  19. Jockush BM, Bubeck P, Giehl K, Kroemker M, Moschner J, Rothkegel M, et al. The molecular architecture of focal adhesions. Ann Rev Cell Dev Biol. 1995;11:379–416.

    Article  Google Scholar 

  20. Jansen JA, den Braber ET, Walboomers XF, de Ruijter JE. Soft tissue and epithelial models. Adv Dent Res. 1999;13:57–66.

    Article  CAS  PubMed  Google Scholar 

  21. Tam SW, Theodoras AM, Shay JW, Draetta GF, Pagano M. Differential expression and regulation of Cyclin D1 protein in normal and tumor human cells: association with Cdk4 is required for Cyclin D1 function in G1 progression. Oncogene. 1994;9:2663–74.

    CAS  PubMed  Google Scholar 

  22. Meyerson M, Harlow E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol. 1994;14:2077–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson DG. Regulation of E2F-1 gene expression by p130 (Rb2) and D-type cyclin kinase activity. Oncogene. 1995;11:1685–92.

    CAS  PubMed  Google Scholar 

  24. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.

    Article  CAS  PubMed  Google Scholar 

  25. Li S, Lao J, Chen BP, Li YS, Zhao Y, Chu J, et al. Genomic analysis of smooth muscle cells in 3-dimensional collagen matrix. FASEB J. 2003;17:97–9.

    Article  CAS  PubMed  Google Scholar 

  26. den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA. Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimensions. Biomaterials. 1996;17:2037–44.

    Article  Google Scholar 

  27. den Braber ET, de Ruijter JE, Smits HT, Ginsel LA, von Recum AF, Jansen JA. Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro-grooves. Biomaterials. 1996;17:1093–9.

    Article  Google Scholar 

  28. Holgers KM, Bjursten LM, Thomsen P, Ericson LE, Tjellström A. Experience with percutaneous titanium implants in the head and neck: a clinical and histological study. J Invest Surg. 1989;2:7–16.

    Article  CAS  PubMed  Google Scholar 

  29. Brånemark PI, Albrektsson T. Titanium implants permanently penetrating human skin. Scand J Plast Reconstr Surg. 1982;16:17–21.

    Article  PubMed  Google Scholar 

  30. Pendegrass CJ, Middleton CA, Gordon D, Jacob J, Blunn GW. Measuring the strength of dermal fibroblast attachment to functionalized titanium alloys in vitro. J Biomed Mater Res A. 2010;92:1028–37.

    PubMed  Google Scholar 

  31. Pankov R, Cukierman E, Katz BZ, Matsumoto K, Lin DC, Lin S, et al. Integrin dynamics and matrix assembly: tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis. J Cell Biol. 2000;148:1075–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clark K, Pankov R, Travis MA, Askari JA, Mould AP, Craig SE, et al. A specific α5β1 integrin conformation promotes directional integrin translocation and fibronectin matrix formation. J Cell Sci. 2005;118:291–300.

    Article  CAS  PubMed  Google Scholar 

  33. Mould AP, Askari JA, Aota Si, Yamada KM, Irie A, Takada Y, et al. Defining the topology of integrin α5β1-fibronectin interactions using inhibitory anti-α5 and anti-β1 monoclonal antibodies. J Biol Chem. 1997;272:17283–92.

    Article  CAS  PubMed  Google Scholar 

  34. Olivares-Navarrete R, Raz P, Zhao G, Chen J, Wieland M, Cochran DL, et al. Integrin α2β1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci U S A. 2008;105:15767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (Grant No. HI16C1838).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Cheon Lee or Suk Won Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This study was approved by the Institutional Review Board of Kyung Hee University Hospital at Gangdong (KHNMC MD IRB 2010-011).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, EC., Lee, D.Y., Lee, MH. et al. The Effect of Fibronectin-Immobilized Microgrooved Titanium Substrata on Cell Proliferation and Expression of Genes and Proteins in Human Gingival Fibroblasts. Tissue Eng Regen Med 15, 615–627 (2018). https://doi.org/10.1007/s13770-018-0153-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-018-0153-7

Keyword

Navigation