Skip to main content
Log in

Serial Analysis of Tracheal Restenosis After 3D-Printed Scaffold Implantation: Recruited Inflammatory Cells and Associated Tissue Changes

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Tracheal restenosis is a major obstacle to successful tracheal replacement, and remains the greatest challenge in tracheal regeneration. However, there have been no detailed investigations of restenosis. The present study was performed to analyze the serial changes in recruited inflammatory cells and associated histological changes after tracheal scaffold implantation. Asymmetrically porous scaffolds, which successfully prevented tracheal stenosis in a partial trachea defect model, designed with a tubular shape by electrospinning and reinforced by 3D-printing to reconstruct 2-cm circumferential tracheal defect. Serial rigid bronchoscopy, micro-computed tomography, and histology [H&E, Masson’s Trichrome, IHC against α-smooth muscle actin (α-SMA)] were performed 1, 4, and 8 weeks after transplantation. Progressive stenosis developed especially at the site of anastomosis. Neutrophils were the main inflammatory cells recruited in the early stage, while macrophage infiltration increased with time. Recruitment of fibroblasts peaked at 4 weeks and deposition of α-SMA increased from 4 weeks and was maintained through 8 weeks. During the first 8 weeks post-transplantation, neutrophils and macrophages played significant roles in restenosis of the trachea. Antagonists to these would be ideal targets to reduce restenosis and thus play a pivotal role in successful tracheal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hagberg C, Georgi R, Krier C. Complications of managing the airway. Best Pract Res Clin Anaesthesiol. 2005;19:641–59.

    Article  PubMed  Google Scholar 

  2. Wain JC Jr. Postintubation tracheal stenosis. Semin Thorac Cardiovasc Surg. 2009;21:284–9.

    Article  PubMed  Google Scholar 

  3. Daumerie G, Su S, Ochroch EA. Anesthesia for the patient with tracheal stenosis. Anesthesiol Clin. 2010;28:157–74.

    Article  PubMed  Google Scholar 

  4. Shapshay SM, Beamis JF Jr, Hybels RL, Bohigian RK. Endoscopic treatment of subglottic and tracheal stenosis by radial laser incision and dilation. Ann Otol Rhinol Laryngol. 1987;96:661–4.

    Article  CAS  PubMed  Google Scholar 

  5. Lee KE, Shin JH, Song HY, Kim SB, Kim KR, Kim JH. Management of airway involvement of oesophageal cancer using covered retrievable nitinol stents. Clin Radiol. 2009;64:133–41.

    Article  CAS  PubMed  Google Scholar 

  6. Perepelitsyn I, Shapshay SM. Endoscopic treatment of laryngeal and tracheal stenosis-has mitomycin C improved the outcome? Otolaryngol Head Neck Surg. 2004;131:16–20.

    Article  PubMed  Google Scholar 

  7. Tatekawa Y, Kawazoe N, Chen G, Shirasaki Y, Komuro H, Kaneko M. Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatr Surg Int. 2010;26:575–80.

    Article  PubMed  Google Scholar 

  8. Lee DY, Lee JH, Ahn HJ, Oh SH, Kim TH, Kim HB, et al. Synergistic effect of laminin and mesenchymal stem cells on tracheal mucosal regeneration. Biomaterials. 2015;44:134–42.

    Article  CAS  PubMed  Google Scholar 

  9. Kwon SK, Song JJ, Cho CG, Park SW, Kim JR, Oh SH, et al. Tracheal reconstruction with asymmetrically porous polycaprolactone/pluronic F127 membranes. Head Neck. 2014;36:643–51.

    Article  PubMed  Google Scholar 

  10. Lee DY, Park SA, Lee SJ, Kim TH, Oh SH, Lee JH, et al. Segmental tracheal reconstruction by 3D-printed scaffold: pivotal role of asymmetrically porous membrane. Laryngoscope. 2016;126:E304–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kim DH, Choi CB, Yang WJ, Chung WH, Lee AJ, Chung DJ, et al. Tracheal replacement with fresh and cryopreserved aortic allograft in adult dog. J Surg Res. 2012;175:199–206.

    Article  PubMed  Google Scholar 

  12. Makris D, Holder-Espinasse M, Wurtz A, Seguin A, Hubert T, Jaillard S, et al. Tracheal replacement with cryopreserved allogenic aorta. Chest. 2010;137:60–7.

    Article  CAS  PubMed  Google Scholar 

  13. Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383:238–44.

    Article  PubMed  Google Scholar 

  14. Eardley KS, Zehnder D, Quinkler M, Lepenies J, Bates RL, Savage CO, et al. The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int. 2006;69:1189–97.

    Article  CAS  PubMed  Google Scholar 

  15. Lech M, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta. 2013;1832:989–97.

    Article  CAS  PubMed  Google Scholar 

  16. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. 2007;170:1807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rockey DC, Housset CN, Friedman SL. Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo. J Clin Invest. 1993;92:1795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60:1090–6.

    Article  CAS  PubMed  Google Scholar 

  19. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. 2001;12:2730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee SJ, Heo DN, Moon JH, Park HN, Ko WK, Bae MS, et al. Chitosan/polyurethane blended fiber sheets containing silver sulfadiazine for use as an antimicrobial wound dressing. J Nanosci Nanotechnol. 2014;14:7488–94.

    Article  CAS  PubMed  Google Scholar 

  21. Lee SJ, Heo DN, Moon JH, Ko WK, Lee JB, Bae MS, et al. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym. 2014;111:530–7.

    Article  CAS  PubMed  Google Scholar 

  22. Lee SJ, Heo DN, Park JS, Kwon SK, Lee JH, Kim WD, et al. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys Chem Chem Phys. 2015;17:2996–9.

    Article  CAS  PubMed  Google Scholar 

  23. Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380:994–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bacon JL, Patterson CM, Madden BP. Indications and interventional options for non-resectable tracheal stenosis. J Thorac Dis. 2014;6:258–70.

    PubMed  PubMed Central  Google Scholar 

  25. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023–30.

    Article  PubMed  Google Scholar 

  26. Berg M, Ejnell H, Kovacs A, Nayakawde N, Patil PB, Joshi M, et al. Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: a case report. Tissue Eng A. 2014;20:389–97.

    Article  Google Scholar 

  27. Park DU, Yeom JK, Lee WJ, Lee KM. Assessment of the levels of airborne bacteria, Gram-negative bacteria, and fungi in hospital lobbies. Int J Environ Res Public Health. 2013;10:541–55.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Du XF, Kwon SK, Song JJ, Cho CG, Park SW. Tracheal reconstruction by mesenchymal stem cells with small intestine submucosa in rabbits. Int J Pediatr Otorhinolaryngol. 2012;76:345–51.

    Article  PubMed  Google Scholar 

  29. Suzuki T, Kobayashi K, Tada Y, Suzuki Y, Wada I, Nakamura T, et al. Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells. Ann Otol Rhinol Laryngol. 2008;117:453–63.

    Article  PubMed  Google Scholar 

  30. Braga TT, Agudelo JS, Camara NO. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol. 2015;6:602.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kzhyshkowska J, Gudima A, Riabov V, Dollinger C, Lavalle P, Vrana NE. Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol. 2015;98:953–62.

    Article  CAS  PubMed  Google Scholar 

  32. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vernon MA, Mylonas KJ, Hughes J. Macrophages and renal fibrosis. Semin Nephrol. 2010;30:302–17.

    Article  CAS  PubMed  Google Scholar 

  34. Antoniades HN, Bravo MA, Avila RE, Galanopoulos T, Neville-Golden J, Maxwell M, et al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest. 1990;86:1055–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cowper SE, Bucala R. Nephrogenic fibrosing dermopathy: suspect identified, motive unclear. Am J Dermatopathol. 2003;25:358.

    Article  PubMed  Google Scholar 

  36. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96:319–28.

    Article  CAS  PubMed  Google Scholar 

  37. Chaudhary NI, Roth GJ, Hilberg F, Muller-Quernheim J, Prasse A, Zissel G, et al. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir J. 2007;29:976–85.

    Article  CAS  PubMed  Google Scholar 

  38. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31:220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ, et al. Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res. 2003;63:1860–4.

    CAS  PubMed  Google Scholar 

  41. Park S, Park M, Kim BH, Lee JE, Park HJ, Lee SH, et al. Acute suppression of TGF-ss with local, sustained release of tranilast against the formation of fibrous capsules around silicone implants. J Control Release. 2015;200:125–37.

    Article  CAS  PubMed  Google Scholar 

  42. Kim YK, Que R, Wang SW, Liu WF. Modification of biomaterials with a self-protein inhibits the macrophage response. Adv Healthc Mater. 2014;3:989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ozcelik H, Vrana NE, Gudima A, Riabov V, Gratchev A, Haikel Y, et al. Harnessing the multifunctionality in nature: a bioactive agent release system with self-antimicrobial and immunomodulatory properties. Adv Healthc Mater. 2015;4:2026–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HI14C0184 to S. K. K), by a Grant from the Seoul National University Hospital Research Fund (Grant Number: 0320140360 to S. K. K) and by the Education and Research Encouragement Fund of the Seoul National University Hospital (2016, to H. W. S).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun-Woo Shin or Seong Keun Kwon.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical standard

All protocols were performed in accordance with the guidelines of the Animal Care Ethics Committee of Seoul National University Hospital (IACUC No. 15-0268-C1A1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, HJ., Khalmuratova, R., Park, S.A. et al. Serial Analysis of Tracheal Restenosis After 3D-Printed Scaffold Implantation: Recruited Inflammatory Cells and Associated Tissue Changes. Tissue Eng Regen Med 14, 631–639 (2017). https://doi.org/10.1007/s13770-017-0057-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0057-y

Keywords

Navigation