Skip to main content
Log in

Grafting collagen on poly (lactic acid) by a simple route to produce electrospun scaffolds, and their cell adhesion evaluation

  • Original Article
  • Tissue Engineering
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Increasing bioactivity and mechanical properties of polymers to produce more suitable scaffold for tissue engineering is a recurrent goal in the development of new biomedical materials. In this study, collagen-functionalized poly (lactic acid), PLA, was obtained by means of a simple grafting route, and electrospun scaffolds were produced to grow cells in vitro; their bioactivity was compared with scaffolds made of physical blends of PLA and collagen. Grafting was verified via nuclear magnetic resonance, attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopy. The cell adhesion performance of the scaffolds was studied using macrophages. Elastic modulus (74.7 megapascals) and tensile strength (3.0 megapascals) of the scaffold made from PLA grafted with collagen were substantially higher than the scaffolds made from physical blends of collagen and PLA: 32 and 2.16 megapascals, respectively, implying a more resistant material because of the chemical bond of the polypeptide to PLA. Besides, the fibers had more uniform diameter without defects. Scaffolds made from PLA grafted with collagen presented four-fold increase in cell adhesion than those of PLA blended with collagen. Furthermore, cell spreading within the scaffolds occurred only when collagen-functionalized poly (lactic acid) was used. These results open a new option for the easy tailoring of nanofiber-based scaffolds in three dimensions for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laurie GW, Horikoshi S, Killen PD, Segui-Real B, Yamada Y. In situ hybridization reveals temporal and spatial changes in cellular expression of mRNA for a laminin receptor, laminin, and basement membrane (type IV) collagen in the developing kidney. J Cell Biol 1989;109:1351–1362.

    Article  CAS  PubMed  Google Scholar 

  2. Sanes JR, Engvall E, Butkowski R, Hunter DD. Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IVat the neuromuscular junction and elsewhere. J Cell Biol 1990;111:1685–1699.

    Article  CAS  PubMed  Google Scholar 

  3. Werb Z, Chin JR. Extracellular matrix remodeling during morphogenesis. Ann N YAcad Sci 1998;857:110–118.

    Article  CAS  Google Scholar 

  4. Boudreau N, Myers C, Bissell MJ. From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol 1995;5:1–4.

    Article  CAS  PubMed  Google Scholar 

  5. Ingber D. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J Cell Biochem 1991;47:236–241.

    Article  CAS  PubMed  Google Scholar 

  6. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mat Sci Eng C 2007;27:504–509.

    Article  CAS  Google Scholar 

  7. Agarwal S, Greiner A, Wendorff JH. Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications. Adv Funct Mater 2009;19:2863–2879.

    Article  CAS  Google Scholar 

  8. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer 2008;49:5603–5621.

    Article  CAS  Google Scholar 

  9. Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 2006;27:3136–3146.

    Article  CAS  PubMed  Google Scholar 

  10. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004;25:1891–1900.

    Article  CAS  PubMed  Google Scholar 

  11. Hench LL, Jones JR. Biomaterials, artificial organs and tissue engineering. Cambridge: Woodhead Publishing Ltd.; 2005.

    Book  Google Scholar 

  12. Zhang Y, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 2005;16:933–946.

    Article  CAS  PubMed  Google Scholar 

  13. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomed 2006;1:15–30.

    Article  CAS  Google Scholar 

  14. Huang ZM, Zhang YZ, Kotakic M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003;63:2223–2253.

    Article  CAS  Google Scholar 

  15. Smith R. Biodegradable polymers for industrial applications. Cambridge: Woodhead Publishing Ltd.; 2005.

    Book  Google Scholar 

  16. Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 2008;29:1872–1879.

    Article  CAS  PubMed  Google Scholar 

  17. Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 2003;24:759–767.

    Article  CAS  PubMed  Google Scholar 

  18. Friess W. Collagen—biomaterial for drug delivery. Eur J Pharm Biopharm 1998;45:113–136.

    Article  CAS  PubMed  Google Scholar 

  19. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008;60:184–198.

    Article  CAS  PubMed  Google Scholar 

  20. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353–4364.

    Article  CAS  PubMed  Google Scholar 

  21. Gunn J, Zhang M. Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends Biotechnol 2010;28:189–197.

    Article  CAS  PubMed  Google Scholar 

  22. Nyanhongo GS,Diaz Rodriguez R, Nugroho Prasetyo E, Cristina C, Ribeiro C, Sencadas V, et al. Bioactive albumin functionalized polylactic acid membranes for improved biocompatibilty. React Funct Polym 2013;73:1399–1404.

    Article  CAS  Google Scholar 

  23. Yang X, Yuan M, Li W, Zhang G. Synthesis and properties of collagen/polylactic acid blends. Appl Polym 2004;94:1670–1675.

    Article  CAS  Google Scholar 

  24. Yang Y, Porte MC, Marmey P, El Haj AJ, Amédée J, Baquey C. Covalent bonding of collagen on poly(L-lactic acid) by gamma irradiation. Nucl Instrum Methods Phys Res Sect B 2003;207:165–174.

    Article  CAS  Google Scholar 

  25. Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci 2010;35:338–356.

    Article  CAS  Google Scholar 

  26. Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM, et al. Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials 2003;24:3859–3868.

    Article  CAS  PubMed  Google Scholar 

  27. Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules 2004;5:463–473.

    Article  CAS  PubMed  Google Scholar 

  28. Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 2007;32:698–725.

    Article  CAS  Google Scholar 

  29. Cui M, Liu L, Guo N, Su R, Ma F. Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid). Molecules 2015;20:595–607.

    Article  PubMed  Google Scholar 

  30. Luo YF, Wang YL, Niu XF, Pan J, Shi LP. Synthesis and characterization of a novel biomaterial: maleic anhydride-modified poly(dl-lactic acid). Chin Chem Lett 2014;15:521–524.

    Google Scholar 

  31. Pan J, Wang Y, Qin S, Zhang B, Luo Y. Grafting reaction of poly(D,L)lactic acid with maleic anhydride and hexanediamine to introduce more reactive groups in its bulk. J Biomed Mater Res B Appl Biomater 2005;74:476–480.

    Article  PubMed  Google Scholar 

  32. Niu X, Wang Y, Luo Y, Pan J, Shang J. Synthesis of the biomimetic polymer: aliphatic diamine and RGDS modified poly(D, L-lactic acid). Chin Chem Lett 2005;16:1035–1038.

    CAS  Google Scholar 

  33. Vera-Grazianoa R, AMaciel-Cerda A, Moreno-Rondon EV, Ospina A, Gomez-Pachon EY. Modified Polylactide Microfiber Scaffolds for Tissue Engineering. In: Rodil S, Almaguer A, Anselme K, editors. MRS Proceedings. Vol. 1376. Warrendale, PA: Materials Research Society; 2012.

    Google Scholar 

  34. Plackett D. Maleated polylactide as an interfacial compatibilizer in biocomposites. J Polym Environ 2004;12:131–138.

    Article  CAS  Google Scholar 

  35. Kang IK, Kwon BK, Lee JH, Lee HB. Immobilization of proteins on poly(methyl methacrylate) films. Biomaterials 1993;14:787–792.

    Article  CAS  PubMed  Google Scholar 

  36. Gómez-Pachón E, Sânchez-Arévalo FM, Sabina FJ, Maciel-Cerda A, Campos MR, Batina N, et al. Characterisation and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds. J Materials Sci 2013;48:8308–8319.

    Article  Google Scholar 

  37. Su R, Liu L, Li X, Cui M, Ma F. Study on synthesis and application of collagen modified polylactic acid. Polym Compos 2015;36:88–93.

    Article  CAS  Google Scholar 

  38. ASTM D1708-96. Standard test method for tensile properties of plastics by use of microtensile specimens. West Conshohocken, PA: ASTM International; 2002. DOI: 10.1520/D1708-96.

  39. Fowlks AC. Development of polylactic acid-based materials through reactive modification. Ann Arbor: Michigan State University; 2010.

    Google Scholar 

  40. Muenprasat D, Suttireungwong S, Tongpin C. Functionalization of poly (lactic acid) with maleic anhydride for biomedical application. J Met Mater Min 2010;20:189–192.

    CAS  Google Scholar 

  41. Li X, Liu LL, Yang PF, Li P, Xin JJ, Su RX. Synthesis of collagen-modified polylactide and its application in drug delivery. J Appl Polym Sci 2013;129:3290–3296.

    Article  CAS  Google Scholar 

  42. Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 2010;30:1204–1210.

    Article  CAS  Google Scholar 

  43. Hwang SW, Lee SB, Lee CK, Lee JY, Shim JK, Susan EM, et al. Grafting of maleic anhydride on poly(L-lactic acid). Effects of physical and mechanical properties. Polym Test 2012;31:333–344.

    CAS  Google Scholar 

  44. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008;20:86–100.

    Article  CAS  PubMed  Google Scholar 

  45. Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 2012;33:3792–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 2014;10:613–622.

    Article  CAS  PubMed  Google Scholar 

  47. Pouchert CJ. Aldrich Library of NMR Spectra. 2nd ed. Milwaukee, WI: Aldrich Chemical Co.; 1983. p. 1–603.

    Google Scholar 

  48. Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds. 4th ed. Berlin Heidelberg: Springer-Verlag; 2009. p. 224.

    Google Scholar 

  49. Cui W, Li X, Xie C, Zhuang H, Zhou S, Weng J. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials 2010;31:4620–4629.

    Article  CAS  PubMed  Google Scholar 

  50. Cao C, Zhu F, Yu X, Wang Q, Wang C, Li B, et al. Two-step modification of poly(D, L-lactic acid) by ethylenediamine-maleic anhydride. Biomed Mater 2008;3:015002.

    Article  PubMed  Google Scholar 

  51. Wen F, Chang S, Teoh SH, Yu H. Preparation of biocompatible poly(lactic-coglycolic acid) fiber scaffolds for rat liver cells cultivation. Mater Sci Eng C 2007;27:285–292.

    Article  CAS  Google Scholar 

  52. Kwon IK, Matsuda T. Co-electrospun nanofiber fabrics of poly(l-lactide-co-ε-caprolactone) with type I collagen or heparin. Biomacromolecules 2005;6:2096–2105.

    Article  CAS  PubMed  Google Scholar 

  53. Gonçalves F, Bentini R, Burrows MC, Carreira ACO, Kossugue PM, Sogayar MC, et al. Hybrid membranes of PLLA/collagen for bone tissue engineering: a comparative study of scaffold production techniques for optimal mechanical properties and osteoinduction ability. Materials 2015;8:408–423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Maciel-Cerda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ospina-Orejarena, A., Vera-Graziano, R., Castillo-Ortega, M.M. et al. Grafting collagen on poly (lactic acid) by a simple route to produce electrospun scaffolds, and their cell adhesion evaluation. Tissue Eng Regen Med 13, 375–387 (2016). https://doi.org/10.1007/s13770-016-9097-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-9097-y

Key Words

Navigation