Skip to main content
Log in

Pre-treatment of titanium alloy with platelet-rich plasma enhances human osteoblast responses

  • Original Article
  • Biomaterials
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Osseointegration, the histological direct bone-to-implant contact, is the ultimate goal of implant healing and the first prerequisite for long-term success of endosseous implants. It is well-known that metal implants with rough surfaces achieve better osseointegration than those with smooth surfaces in vivo. The implantation of metal materials into bone is always accompanied by bleeding. The implant surface is initially coated with blood and these initial events could determine subsequent osseointegration. However, there is little concordance between in vitro results and in vivo findings regarding the effect of surface roughness on osseointegration. Here, we show that the osteoblast response to metal surfaces pre-treated with platelets and plasma proteins elucidates the superior osseointegration of rough surfaced implants in vivo. We found that osteoblast attachment, proliferation, and osteoblastic differentiation were significantly higher on a rough titanium surface pre-treated with platelet-rich plasma (PRP) than on the same surface without pretreatment. Furthermore, we found that the three-dimensional fibrillar network formed on the rough surface of the titanium by PRP pre-treatment might enhance osteoblast responses. Our results demonstrate why osseointegration is found to be most active on metal implants with a rough surface in vivo. We anticipate that our assay would be a useful tool for mimicking the in vivo model of osseointegration. Because cellular responses to the titanium implant that are pre-treated with platelet and plasma proteins on their surfaces after the biomimetic process in vitro, may be more similar to the events that occur in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1–132.

    PubMed  Google Scholar 

  2. Schroeder A, Pohler O, Sutter F. [Tissue reaction to an implant of a titanium hollow cylinder with a titanium surface spray layer]. SSO Schweiz Monatsschr Zahnheilkd 1976;86:713–727.

    CAS  PubMed  Google Scholar 

  3. Franchi M, Fini M, Martini D, Orsini E, Leonardi L, Ruggeri A, et al. Biological fixation of endosseous implants. Micron 2005;36:665–671.

    Article  CAS  PubMed  Google Scholar 

  4. Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron 2005;36:630–644.

    Article  CAS  PubMed  Google Scholar 

  5. Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials 2007;28:5058–5067.

    Article  CAS  PubMed  Google Scholar 

  6. Cochran DL. A comparison of endosseous dental implant surfaces. J Periodontol 1999;70:1523–1539.

    Article  CAS  PubMed  Google Scholar 

  7. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889–902.

    Article  CAS  PubMed  Google Scholar 

  8. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J Jr, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 1995;29:389–401.

    Article  CAS  PubMed  Google Scholar 

  9. Ong JL, Prince CW, Raikar GN, Lucas LC. Effect of surface topography of titanium on surface chemistry and cellular response. Implant Dent 1996;5:83–88.

    Article  CAS  PubMed  Google Scholar 

  10. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of TiO(2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res 2001;12:515–525.

    Article  CAS  PubMed  Google Scholar 

  11. Cooper LF, Masuda T, Whitson SW, Yliheikkilä P, Felton DA. Formation of mineralizing osteoblast cultures on machined, titanium oxide grit-blasted, and plasma-sprayed titanium surfaces. Int J Oral Maxillofac Implants 1999;14:37–47.

    CAS  PubMed  Google Scholar 

  12. Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, et al. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D3. J Biomed Mater Res 1998;39:77–85.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 2005;74:49–58.

    Article  CAS  PubMed  Google Scholar 

  14. Di Iorio D, Traini T, Degidi M, Caputi S, Neugebauer J, Piattelli A. Quantitative evaluation of the fibrin clot extension on different implant surfaces: an in vitro study. J Biomed Mater Res B Appl Biomater 2005;74:636–642.

    Article  PubMed  Google Scholar 

  15. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res 2006;17:251–257.

    Article  PubMed  Google Scholar 

  16. Lossdörfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res A 2004;70:361–369.

    Article  PubMed  Google Scholar 

  17. Lohmann CH, Bonewald LF, Sisk MA, Sylvia VL, Cochran DL, Dean DD, et al. Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3. J Bone Miner Res 2000;15:1169–1180.

    Article  CAS  PubMed  Google Scholar 

  18. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992;7:302–310.

    CAS  PubMed  Google Scholar 

  19. Wennerberg A, Ektessabi A, Albrektsson T, Johansson C, Andersson B. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillofac Implants 1997;12:486–494.

    CAS  PubMed  Google Scholar 

  20. Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 2000;84:522–534.

    Article  CAS  PubMed  Google Scholar 

  21. Boyan BD, Lossdörfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, et al. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur Cell Mater 2003;6:22–27.

    CAS  PubMed  Google Scholar 

  22. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 2005;11:1–18.

    Article  CAS  PubMed  Google Scholar 

  23. Eriksson C, Broberg M, Nygren H, Oster L. Novel in vivo method for evaluation of healing around implants in bone. J Biomed Mater Res A 2003;66:662–668.

    Article  PubMed  Google Scholar 

  24. Park JY, Gemmell CH, Davies JE. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 2001;22:2671–2682.

    Article  CAS  PubMed  Google Scholar 

  25. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67:932–949.

    PubMed  Google Scholar 

  26. Shi GS, Ren LF, Wang LZ, Lin HS, Wang SB, Tong YQ. H2O2/HCl and heat-treated Ti-6Al-4V stimulates pre-osteoblast proliferation and differentiation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:368–375.

    Article  PubMed  Google Scholar 

  27. Veis AA, Trisi P, Papadimitriou S, Tsirlis AT, Parissis NA, Desiris AK, et al. Osseointegration of Osseotite and machined titanium implants in autogenous bone graft. A histologic and histomorphometric study in dogs. Clin Oral Implants Res 2004;15:54–61.

    Article  PubMed  Google Scholar 

  28. Lakstein D, Kopelovitch W, Barkay Z, Bahaa M, Hendel D, Eliaz N. Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6Al-4V implants in rabbits. Acta Biomater 2009;5:2258–2269.

    Article  CAS  PubMed  Google Scholar 

  29. Wu Y, Zitelli JP, TenHuisen KS, Yu X, Libera MR. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials 2011;32:951–960.

    Article  PubMed  Google Scholar 

  30. Nygren H, Eriksson C, Lausmaa J. Adhesion and activation of platelets and polymorphonuclear granulocyte cells at TiO2 surfaces. J Lab Clin Med 1997;129:35–46.

    Article  CAS  PubMed  Google Scholar 

  31. Isa ZM, Schneider GB, Zaharias R, Seabold D, Stanford CM. Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression. Int J Oral Maxillofac Implants 2006;21:203–211.

    PubMed  Google Scholar 

  32. Kwak HS, Nam J, Lee JH, Kim HJ, Yoo JJ. Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma. J Tissue Eng Regen Med 2014 [Epub ahead of print]. DOI: 10.1002/term.1938.

    Google Scholar 

  33. Arpornmaeklong P, Kochel M, Depprich R, Kübler NR, Würzler KK. Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study. Int J Oral Maxillofac Surg 2004;33:60–70.

    Article  CAS  Google Scholar 

  34. Shin SH, Yoo JJ, Kim HN, Nam J, Kim HJ. Enhanced cellular responses of human bone marrow stromal cells cultured on pretreated surface with allogenic platelet-rich plasma. Connect Tissue Res 2012;53:318–326.

    Article  CAS  PubMed  Google Scholar 

  35. van den Dolder J, Mooren R, Vloon AP, Stoelinga PJ, Jansen JA. Platelet-rich plasma: quantification of growth factor levels and the effect on growth and differentiation of rat bone marrow cells. Tissue Eng 2006;12:3067–3073.

    Article  PubMed  Google Scholar 

  36. Yang D, Chen J, Jing Z, Jin D. Platelet-derived growth factor (PDGF)-AA: a self-imposed cytokine in the proliferation of human fetal osteoblasts. Cytokine 2000;12:1271–1274.

    Article  CAS  PubMed  Google Scholar 

  37. Anitua E, Sánchez M, Nurden AT, Nurden P, Orive G, Andía I. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol 2006;24:227–234.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Joon Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Nam, J., Nam, K.W. et al. Pre-treatment of titanium alloy with platelet-rich plasma enhances human osteoblast responses. Tissue Eng Regen Med 13, 335–342 (2016). https://doi.org/10.1007/s13770-016-9079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-9079-0

Key Words

Navigation