Skip to main content
Log in

Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance

  • Original Article
  • Tissue Engineering
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Articular cartilage has limited regeneration capacity, thus significant challenge has been made to restore the functions. The development of hydrogels that can encapsulate and multiply cells, and then effectively maintain the chondrocyte phenotype is a meaningful strategy to this cartilage repair. In this study, we prepared alginate-hyaluronic acid based hydrogel with type I collagen being incorporated, namely Alg-HA-Col composite hydrogel. The incorporation of Col enhanced the chemical interaction of molecules, and the thermal stability and dynamic mechanical properties of the resultant hydrogels. The primary chondrocytes isolated from rat cartilage were cultured within the composite hydrogel and the cell viability recorded revealed active proliferation over a period of 21 days. The mRNA levels of chondrocyte phenotypes, including SOX9, collagen type II, and aggrecan, were significantly up-regulated when the cells were cultured within the Alg-HA-Col gel than those cultured within the Alg-HA. Furthermore, the secretion of sulphated glycosaminoglycan, a cartilage-specific matrix molecule, was recorded higher in the collagen-added composite hydrogel. Although more in-depth studies are required such as the in vivo functions, the currently-prepared Alg-HA-Col composite hydrogel is considered to provide favorable 3-dimensional matrix conditions for the cultivation of chondrocytes. Moreover, the cell-cultured constructs may be useful for the cartilage repair and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cuevas P, Burgos J, Baird A. Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo. Biochem Biophys Res Commun 1988;156:611–618.

    Article  CAS  PubMed  Google Scholar 

  2. Brenner JM, Kunz M, Tse MY, Winterborn A, Bardana DD, Pang SC, et al. Development of large engineered cartilage constructs from a small population of cells. Biotechnol Prog 2013;29:213–221.

    Article  CAS  PubMed  Google Scholar 

  3. Lach M, Trzeciak T, Richter M, Pawlicz J, Suchorska WM. Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment. J Tissue Eng 2014;5:2041731414552701.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jin ES, Jeong JH, Min JK, Jeon SR, Choi KH. Implantation of adipose tissue-derived mesenchymal stem cells in degenerative intervertebral disc of rat:when is the most effective time during the degeneration period. Tissue Eng Regen Med 2014;11:195–202.

    Article  CAS  Google Scholar 

  5. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994;331:889–895.

    Article  CAS  PubMed  Google Scholar 

  6. Rahman RA, Radzi MAA, Sukri NM, Nazir NM, Sha’ban M. Tissue engineering of articular cartilage:from bench to bed-side. Tissue Eng Regen Med 2015;12:1–11.

    Article  Google Scholar 

  7. Yang JW, Heo MS, Lee CH, Moon SW, Min BH, Choi BH, et al. The effect of the cell-derived extracellular matrix membrane on wound adhesions in rabbit strabismus surgery. Tissue Eng Regen Med 2014;11:155–162.

    Article  CAS  Google Scholar 

  8. Jin GZ, Kim JJ, Park JH, Seo SJ, Kim JH, Lee EJ, et al. Biphasic nanofibrous constructs with seeded cell layers for osteochondral repair. Tissue Eng Part C Methods 2014;20:895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Faikrua A, Wittaya-areekul S, Oonkhanond B, Viyoch J. A thermosensitive chitosan/corn starch/ß-glycerol phosphate hydrogel containing TGF-ß1 promotes differentiation of MSCs into chondrocyte-like cells. Tissue Eng Regen Med 2014;11:355–361.

    Article  CAS  Google Scholar 

  10. Seo SJ, Mahapatra C, Singh RK, Knowles JC, Kim HW. Strategies for osteochondral repair:focus on scaffolds. J Tissue Eng 2014;5:2041731414 541850.

    Article  Google Scholar 

  11. Sun H, Liu Y, Jiang T, Liu X, He A, Li J, et al. Chondrogenic differentiation and three dimensional chondrogenesis of human adipose-derived stem cells induced by engineered cartilage-derived conditional media. Tissue Eng Regen Med 2014;11:59–66.

    Article  CAS  Google Scholar 

  12. Hoshiba T, Yamada T, Lu H, Kawazoe N, Chen G. Maintenance of cartilaginous gene expression on extracellular matrix derived from serially passaged chondrocytes during in vitro chondrocyte expansion. J Biomed Mater Res A 2012;100:694–702.

    Article  PubMed  Google Scholar 

  13. Shetty AA, Kim SJ, Shetty V, Stelzeneder D, Shetty N, Bilagi P, et al. Autologous bone-marrow mesenchymal cell induced chondrogenesis:single-stage arthroscopic cartilage repair. Tissue Eng Regen Med 2014;11:247–253.

    Article  CAS  Google Scholar 

  14. Callahan LA, Ganios AM, Childers EP, Weiner SD, Becker ML. Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young’s modulus gradient. Acta Biomater 2013;9:6095–6104.

    Article  PubMed  Google Scholar 

  15. Caron MM, Emans PJ, Coolsen MM, Voss L, Surtel DA, Cremers A, et al. Redifferentiation of dedifferentiated human articular chondrocytes:comparison of 2D and 3D cultures. Osteoarthritis Cartilage 2012;20:1170–1178.

    Article  CAS  PubMed  Google Scholar 

  16. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division:implications for cartilage tissue repair. Proc Natl Acad Sci U S A 2002;99:9996–10001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering:progress and challenges. Glob Cardiol Sci Pract 2013;2013:316–342.

    PubMed  PubMed Central  Google Scholar 

  18. Kontturi LS, Järvinen E, Muhonen V, Collin EC, Pandit AS, Kiviranta I, et al. An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv Transl Res 2014;4:149–158.

    Article  CAS  PubMed  Google Scholar 

  19. Sheehy EJ, Mesallati T, Vinardell T, Kelly DJ. Engineering cartilage or endochondral bone:a comparison of different naturally derived hydrogels. Acta Biomater 2015;13:245–253.

    Article  CAS  PubMed  Google Scholar 

  20. Palazzolo G, Broguiere N, Cenciarelli O, Dermutz H, Zenobi-Wong M. Ultrasoft alginate hydrogels support long-term three-dimensional functional neuronal networks. Tissue Eng Part A 2015;21:2177–2185.

    Article  CAS  PubMed  Google Scholar 

  21. Hulmes DJ, Marsden ME, Strachan RK, Harvey RE, McInnes N, Gardner DL. Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthritis Cartilage 2004;12:232–238.

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa M, Yoshioka K, Urano K, Tanaka Y, Hatanaka T, Nii A. Biocompatibility of cross-linked hyaluronate (Gel-200) for the treatment of knee osteoarthritis. Osteoarthritis Cartilage 2014;22:1902–1909.

    Article  CAS  PubMed  Google Scholar 

  23. Yu CJ, Ko CJ, Hsieh CH, Chien CT, Huang LH, Lee CW, et al. Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. J Proteomics 2014;99:40–53.

    Article  CAS  PubMed  Google Scholar 

  24. Baboolal TG, Mastbergen SC, Jones E, Calder SJ, Lafeber FP, McGonagle D. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Ann Rheum Dis 2016;75:908–915.

    Article  PubMed  Google Scholar 

  25. Ishida O, Tanaka Y, Morimoto I, Takigawa M, Eto S. Chondrocytes are regulated by cellular adhesion through CD44 and hyaluronic acid pathway. J Bone Miner Res 1997;12:1657–1663.

    Article  CAS  PubMed  Google Scholar 

  26. Akmal M, Singh A, Anand A, Kesani A, Aslam N, Goodship A, et al. The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br 2005;87:1143–1149.

    Article  CAS  PubMed  Google Scholar 

  27. Yoon DM, Curtiss S, Reddi AH, Fisher JP. Addition of hyaluronic acid to alginate embedded chondrocytes interferes with insulin-like growth factor-1 signaling in vitro and in vivo. Tissue Eng Part A 2009;15:3449–3459.

    Article  CAS  PubMed  Google Scholar 

  28. Yoshikawa K, Kitamura N, Kurokawa T, Gong JP, Nohara Y, Yasuda K. Hyaluronic acid affects the in vitro induction effects of synthetic PAMPS and PDMAAm hydrogels on chondrogenic differentiation of ATDC5 cells, depending on the level of concentration. BMC Musculoskelet Disord 2013;14:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coates EE, Riggin CN, Fisher JP. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells. J Orthop Res 2012;30:1886–1897.

    Article  CAS  PubMed  Google Scholar 

  30. Moshaverinia A, Xu X, Chen C, Akiyama K, Snead ML, Shi S. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater 2013;9:9343–9350.

    Article  CAS  PubMed  Google Scholar 

  31. Mhanna R, Kashyap A, Palazzolo G, Vallmajo-Martin Q, Becher J, Möller S, et al. Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers. Tissue Eng Part A 2014;20:1454–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gründer T, Gaissmaier C, Fritz J, Stoop R, Hortschansky P, Mollenhauer J, et al. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 2004;12:559–567.

    Article  PubMed  Google Scholar 

  33. Re’em T, Tsur-Gang O, Cohen S. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFbeta1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials 2010;31:6746–6755.

    Article  PubMed  Google Scholar 

  34. Guha Thakurta S, Budhiraja G, Subramanian A. Growth factor and ultrasound-assisted bioreactor synergism for human mesenchymal stem cell chondrogenesis. J Tissue Eng 2015;6:2041731414566529.

    PubMed  Google Scholar 

  35. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010;123(Pt 24):4195–4200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loeser RF. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol 2014;39:11–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng 2016;7:2041731415618342.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Enomoto-Iwamoto M, Iwamoto M, Nakashima K, Mukudai Y, Boettiger D, Pacifici M, et al. Involvement of alpha5beta1 integrin in matrix interactions and proliferation of chondrocytes. J Bone Miner Res 1997;12:1124–1132.

    Article  CAS  PubMed  Google Scholar 

  39. Chen CW, Tsai YH, Deng WP, Shih SN, Fang CL, Burch JG, et al. Type I and II collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells. J Orthop Res 2005;23:446–453.

    Article  CAS  PubMed  Google Scholar 

  40. do Amaral RJ, Matsiko A, Tomazette MR, Rocha WK, Cordeiro-Spinetti E, Levingstone TJ, et al. Platelet-rich plasma releasate differently stimulates cellular commitment toward the chondrogenic lineage according to concentration. J Tissue Eng 2015;6:2041731415594127.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shimomura Y, Yoneda T, Suzuki F. Osteogenesis by chondrocytes from growth cartilage of rat rib. Calcif Tissue Res 1975;19:179–187.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Chen M, Yao X, Xu C, Zhang Y, Wang Y. Enhancement in dentin collagen’s biological stability after proanthocyanidins treatment in clinically relevant time periods. Dent Mater 2013;29:485–492.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 2008;29:3539–3546.

    Article  CAS  PubMed  Google Scholar 

  44. Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep 2015;4:620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Benya PD. Modulation and reexpression of the chondrocyte phenotype;mediation by cell shape and microfilament modification. Pathol Immunopathol Res 1988;7:51–54.

    Article  CAS  PubMed  Google Scholar 

  46. Bush PG, Hall AC. The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthritis Cartilage 2003;11:242–251.

    Article  CAS  PubMed  Google Scholar 

  47. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30:215–224.

    Article  CAS  PubMed  Google Scholar 

  48. Quarto R, Dozin B, Bonaldo P, Cancedda R, Colombatti A. Type VI collagen expression is upregulated in the early events of chondrocyte differentiation. Development 1993;117:245–251.

    CAS  PubMed  Google Scholar 

  49. Xu H, Bihan D, Chang F, Huang PH, Farndale RW, Leitinger B. Discoidin domain receptors promote a1ß1-and a2ß1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS One 2012;7:e52209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marlovits S, Hombauer M, Truppe M, Vècsei V, Schlegel W. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br 2004;86:286–295.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, C., Jin, GZ. & Kim, HW. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng Regen Med 13, 538–546 (2016). https://doi.org/10.1007/s13770-016-0059-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0059-1

Key Words

Navigation