Skip to main content
Log in

Supplementation of growth differentiation factor-5 increases proliferation and size of chondrogenic pellets of human umbilical cord-derived perivascular stem cells

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

In recent years, perivascular stem cells (PVCs) have gained increasing attention as a promising source for regenerative medicine due to their greater differentiation potential compared to multipotent mesenchymal stem cells (MSCs). It has been reported that growth differentiation factor-5 (GDF-5) is involved in regulating proliferation and chondrogenic differentiation of MSCs. In this study, we investigated the effect of GDF-5 on the proliferation and chondrogenic differentiation of PVCs isolated from human umbilical cords. The supplementation of PVC cultures with GDF-5 (100 ng/mL) significantly enhanced their proliferative rate and augmented the size of pellets in micromass pellet cultures for chondrogenic induction. Although similar expression levels of chondrogenic-related genes were observed in chondrogenic pellets treated with GDF-5 compared to the pellets without GDF-5 treatment, these results indicate that supplementation of GDF-5 is able to acquire more chondrocytes when starting with equal amount of PVCs. Our study suggests that GDF-5 is an effective agent for the enhancement of PVC proliferation, thereby achieving a higher number of chondrocytes that are applicable in therapeutic doses for cartilage regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris JD, Siston RA, Pan X, Flanigan DC. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 2010;92:2220–2233.

    PubMed  Google Scholar 

  2. Hollander AP, Dickinson SC, Kafienah W. Stem cells and cartilage development: complexities of a simple tissue. Stem Cells 2010;28:1992–1996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zeifang F, Oberle D, Nierhoff C, Richter W, Moradi B, Schmitt H. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial. Am J Sports Med 2010;38:924–933.

    Article  PubMed  Google Scholar 

  4. Gong Y, Su K, Lau TT, Zhou R, Wang DA. Microcavitary hydrogel-mediating phase transfer cell culture for cartilage tissue engineering. Tissue Eng Part A 2010;16:3611–3622.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Han EH, Bae WC, Hsieh-Bonassera ND, Wong VW, Schumacher BL, Görtz S, et al. Shaped, stratified, scaffold-free grafts for articular cartilage defects. Clin Orthop Relat Res 2008;466:1912–1920.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Furukawa KS, Imura K, Tateishi T, Ushida T. Scaffold-free cartilage by rotational culture for tissue engineering. J Biotechnol 2008;133:134–145.

    Article  CAS  PubMed  Google Scholar 

  7. Coleman CM, Curtin C, Barry FP, O’Flatharta C, Murphy JM. Mesenchymal stem cells and osteoarthritis: remedy or accomplice? Hum Gene Ther 2010;21:1239–1250.

    Article  CAS  PubMed  Google Scholar 

  8. Saha S, Kirkham J, Wood D, Curran S, Yang XB. Informing future cartilage repair strategies: a comparative study of three different human cell types for cartilage tissue engineering. Cell Tissue Res 2013;352:495–507.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Marquass B, Schulz R, Hepp P, Zscharnack M, Aigner T, Schmidt S, et al. Matrix-associated implantation of predifferentiated mesenchymal stem cells versus articular chondrocytes: in vivo results of cartilage repair after 1 year. Am J Sports Med 2011;39:1401–1412.

    Article  PubMed  Google Scholar 

  10. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3:301–313.

    Article  CAS  PubMed  Google Scholar 

  11. Hong SH, Maghen L, Kenigsberg S, Teichert AM, Rammeloo AW, Shlush E, et al. Ontogeny of human umbilical cord perivascular cells: molecular and fate potential changes during gestation. Stem Cells Dev 2013;22: 2425–2439.

    Article  CAS  PubMed  Google Scholar 

  12. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007;25:1384–1392.

    Article  CAS  PubMed  Google Scholar 

  13. Kim JH, Lee MC, Seong SC, Park KH, Lee S. Enhanced proliferation and chondrogenic differentiation of human synovium-derived stem cells expanded with basic fibroblast growth factor. Tissue Eng Part A 2011;17: 991–1002.

    Article  CAS  PubMed  Google Scholar 

  14. Murphy MK, Huey DJ, Hu JC, Athanasiou KA. TGF-ß1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 2015;33: 762–773.

    Article  CAS  PubMed  Google Scholar 

  15. Lee S, Kim JH, Jo CH, Seong SC, Lee JC, Lee MC. Effect of serum and growth factors on chondrogenic differentiation of synovium-derived stromal cells. Tissue Eng Part A 2009;15:3401–3415.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Z, Jia C, Han C. [Experimental study on chondrogenic differentiation of rabbit adipose-derived stem cells treated with growth differentiation factor 5]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2009;23:483–489.

    CAS  PubMed  Google Scholar 

  17. Feng G, Wan Y, Balian G, Laurencin CT, Li X. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors 2008;26:132–142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Coleman CM, Tuan RS. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech Dev 2003;120: 823–836.

    Article  CAS  PubMed  Google Scholar 

  19. Tian HT, Zhang B, Tian Q, Liu Y, Yang SH, Shao ZW. Construction of self-assembled cartilage tissue from bone marrow mesenchymal stem cells induced by hypoxia combined with GDF-5. J Huazhong Univ Sci Technolog Med Sci 2013;33:700–706.

    Article  CAS  PubMed  Google Scholar 

  20. Coleman CM, Vaughan EE, Browe DC, Mooney E, Howard L, Barry F. Growth differentiation factor-5 enhances in vitro mesenchymal stromal cell chondrogenesis and hypertrophy. Stem Cells Dev 2013;22:1968–1976.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sun Z, Zhang Y, Yang S, Jia J, Ye S, Chen D, et al. Growth differentiation factor 5 modulation of chondrogenesis of self-assembled constructs involves gap junction-mediated intercellular communication. Dev Growth Differ 2012;54:809–817.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang B, Yang S, Sun Z, Zhang Y, Xia T, Xu W, et al. Human mesenchymal stem cells induced by growth differentiation factor 5: an improved self-assembly tissue engineering method for cartilage repair. Tissue Eng Part C Methods 2011;17:1189–1199.

    Article  CAS  PubMed  Google Scholar 

  23. Al-Sharabi N, Xue Y, Fujio M, Ueda M, Gjerde C, Mustafa K, et al. Bone marrow stromal cell paracrine factors direct osteo/odontogenic differentiation of dental pulp cells. Tissue Eng Part A 2014;20:3063–3072.

    Article  CAS  PubMed  Google Scholar 

  24. Park A, Hogan MV, Kesturu GS, James R, Balian G, Chhabra AB. Adipose- derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Eng Part A 2010; 16:2941–2951.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. An B, Na S, Lee S, Kim WJ, Yang SR, Woo HM, et al. Non-enzymatic isolation followed by supplementation of basic fibroblast growth factor improves proliferation, clonogenic capacity and SSEA-4 expression of perivascular cells from human umbilical cord. Cell Tissue Res 2015;359:767–777.

    Article  CAS  PubMed  Google Scholar 

  26. Crisan M, Corselli M, Chen WC, Péault B. Perivascular cells for regenerative medicine. J Cell Mol Med 2012;16:2851–2860.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tan SL, Ahmad RE, Ahmad TS, Merican AM, Abbas AA, Ng WM, et al. Effect of growth differentiation factor 5 on the proliferation and tenogenic differentiation potential of human mesenchymal stem cells in vitro. Cells Tissues Organs 2012;196:325–338.

    Article  CAS  PubMed  Google Scholar 

  28. Hatakeyama Y, Maruya Y, Hatakeyama J, Oka K, Tsuruga E, Inai T, et al. The Distinct Roles of Growth/Differentiation Factor-5 in Cell Proliferation and Odontoblast Differentiation from Dental Pulp Cells. Internet J Dent Sci 2012. Available from: URL: https://ispub.com/IJDS/10/2/14018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeonghee Yang or Seok-Ho Hong.

Additional information

These authors equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, B., Heo, HR., Lee, S. et al. Supplementation of growth differentiation factor-5 increases proliferation and size of chondrogenic pellets of human umbilical cord-derived perivascular stem cells. Tissue Eng Regen Med 12, 181–187 (2015). https://doi.org/10.1007/s13770-015-0113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0113-4

Key Words

Navigation