Skip to main content
Log in

탈세포 장기 지지체의 제조 및 분석기법

Fabrication and characterization techniques for decellularized organ scaffolds

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Organ transplantation has often been successful for treatment of end-stage organ failure. However, the shortage of donor organ still remains problematic in clinical practices. As an alternative, the tissue-engineering approach for functional organ replacement has been extensively studied. More recently, decellularized organs have been emerged as a promising scaffold for reconstruction of the complicated organs (e.g., heart, liver, lung and kidney). The ideal decellularized organ scaffolds need to contain extracellular matrix (ECM), bioactive molecules, vascular systems and tissue microarchitecture. To fulfill these requirements, physical, chemical, and biological techniques have been adapted in the process of organ decellularization. In this review, the representative techniques for the organ decellularization and their characterization as well as considerations for implantation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.konos.go.kr/

  2. PM Baptista, MM Siddiqui, G Lozier, et al., The use of whole organ decellularization for the generation of a vascularized liver organoid, Hepatology, 53, 604 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. SF Badylak, The extracellular matrix as a scaffold for tissue reconstruction, Semin Cell Dev Biol, 13,377 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. HC Ott, TS Matthiesen, SK Goh, et al., Perfusiondecellularized matrix: using nature's platform to engineer a bioartificial heart, Nat Med, 14,213 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. KH Nakayama, CA Batchelder, CI Lee, et al., Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering, Tissue Eng Part A, 16,2207 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. TH Petersen, EA Calle, L Zhao, et al., Tissue-engineered lungs for in vivo implantation, Science, 329, 538 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. SF Badylak, D Taylor, K Uygun, Whole-organ tissue engineering: decellularization and recellularization of threedimensional matrix scaffolds, Annu Rev Biomed Eng, 13, 27 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. JE Arenas-Herrera, IK Ko, A Atala, et al., Decellularization for whole organ bioengineering, Biomed Mater, 8, 014106 (2013).

  9. PM Crapo, TW Gilbert, SF Badylak,: An overview of tissue and whole organ decellularization processes, Biomaterials, 32, 3233 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. P Macchiarini, P Jungebluth, T Go, et al., Clinical transplantation of a tissue-engineered airway, Lancet, 372, 2023 (2008).

    Article  PubMed  Google Scholar 

  11. J Cortiella, J Niles, A Cantu, et al., Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation, Tissue Eng Part A, 16, 2565 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. BE Uygun, A Soto-Gutierrez, H Yagi, et al., Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix, Nat Med, 16, 814 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. EA Ross, MJ Williams, T Hamazaki, et al., Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds, J Am Soc Nephrol, 20, 2338 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  14. J Hodde, A Janis, D Ernst, et al., Effects of sterilization on an extracellular matrix scaffold: part I, Composition and matrix architecture, J Mater Sci Mater Med, 18, 537 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. X Dong, X Wei, W Yi, et al., RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering, J Mater Sci Mater Med, 20, 2327 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. JM Wainwright, CA Czajka, UB Patel, et al., Preparation of cardiac extracellular matrix from an intact porcine heart, Tissue Eng Part C Methods, 16, 525 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. JE Reing, BN Brown, KA Daly, et al., The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds, Biomaterials, 31, 8626 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. O Gorschewsky, A Puetz, K Riechert, et al., Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts, Biomed Mater Eng, 15, 403 (2005).

    CAS  PubMed  Google Scholar 

  19. B Cox, A Emili, Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics, Nat Protoc, 1, 1872 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. CC Xu, RW Chan, N Tirunagari, A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria, Tissue Eng, 13, 551 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. MS Alhamdani, C Schroder, J Werner, et al., Single-step procedure for the isolation of proteins at near-native conditions from mammalian tissue for proteomic analysis on antibody microarrays, J Proteome Res, 9, 963 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. SR Meyer, B Chiu, TA Churchill, et al., Comparison of aortic valve allograft decellularization techniques in the rat, J Biomed Mater Res A, 79, 254 (2006).

    Article  PubMed  Google Scholar 

  23. MT Kasimir, E Rieder, G Seebacher, et al., Comparison of different decellularization procedures of porcine heart valves, Int J Artif Organs, 26, 421 (2003).

    CAS  PubMed  Google Scholar 

  24. TW Hudson, SY Liu, CE Schmidt, Engineering an improved acellular nerve graft via optimized chemical processing, Tissue Eng, 10, 1346 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. G Feil, M Christ-Adler, S Maurer, et al., Investigations of urothelial cells seeded on commercially available small intestine submucosa, Eur Urol, 50, 1330 (2006).

    Article  PubMed  Google Scholar 

  26. I Prasertsung, S Kanokpanont, T Bunaprasert, et al., Development of acellular dermis from porcine skin using periodic pressurized technique, J Biomed Mater Res B Appl Biomater, 85, 210 (2008).

    Article  PubMed  Google Scholar 

  27. R Levy, N Vyavahare, M Ogle, et al., Inhibition of cusp and aortic wall calcification in ethanol-and aluminum-treated bioprosthetic heart valves in sheep: background, mechanisms, and synergism, J Heart Valve Dis, 12, 209 (2003).

    PubMed  Google Scholar 

  28. BN Brown, JM Freund, L Han, et al., Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix, Tissue Eng Part C Methods, 17, 411 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. CR Deeken, AK White, SL Bachman, et al., Method of preparing a decellularized porcine tendon using tributyl phosphate, J Biomed Mater Res B Appl Biomater, 96, 199 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. B Yang, Y Zhang, L Zhou, et al., Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering, Tissue Eng Part C Methods, 16, 1201 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. RW Grauss, MG Hazekamp, F Oppenhuizen, et al., Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods, Eur J Cardiothorac Surg, 27, 566 (2005).

    Article  PubMed  Google Scholar 

  32. H Xu, H Wan, M Sandor, et al., Host response to human acellular dermal matrix transplantation in a primate model of abdominal wall repair, Tissue Eng Part A, 14, 2009 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. AR Gillies, LR Smith, RL Lieber, et al., Method for decellularizing skeletal muscle without detergents or proteolytic enzymes, Tissue Eng Part C Methods, 17, 383 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. S Funamoto, K Nam, T Kimura, et al., The use of highhydrostatic pressure treatment to decellularize blood vessels, Biomaterials, 31, 3590 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. RC Lee, MS Kolodney, Electrical injury mechanisms: electrical breakdown of cell membranes, Plast Reconstr Surg, 80, 672 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. L Gui, SA Chan, CK Breuer, et al., Novel utilization of serum in tissue decellularization, Tissue Eng Part C Methods, 16, 173 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. E Jorge-Herrero, P Fernandez, C Escudero, et al., Calcification of pericardial tissue pretreated with different amino acids, Biomaterials, 17, 571 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. C Weissenstein, P Human, D Bezuidenhout, et al., Glutaraldehyde detoxification in addition to enhanced amine cross-linking dramatically reduces bioprosthetic tissue calcification in the rat model, J Heart Valve Dis, 9, 230 (2000).

    CAS  PubMed  Google Scholar 

  39. S Nagata, R Hanayama, K Kawane, Autoimmunity and the clearance of dead cells, Cell, 140, 619 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. JF Almine, DV Bax, SM Mithieux, et al., Elastin-based materials, Chem Soc Rev, 39, 3371 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. RO Hynes, Integrins: versatility, modulation, and signaling in cell adhesion, Cell, 69, 11 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. J Schwarzbauer, Basement membranes: Putting up the barriers, Curr Biol, 9, R242 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. BH Min, HJ Oh, YJ Kim, Cell Derived Biologic Scaffold, Poly Sci Tech, 22, 27 (2011).

    CAS  Google Scholar 

  44. O Saksela, D Moscatelli, A Sommer, et al., Endothelial cellderived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation, J Cell Biol, 107, 743 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. R Misseri, MP Cain, AJ Casale, et al., Small intestinal submucosa bladder neck slings for incontinence associated with neuropathic bladder, J Urol, 174, 1680 (2005).

    Article  PubMed  Google Scholar 

  46. SY Chun, GJ Lim, TG Kwon, et al., Identification and characterization of bioactive factors in bladder submucosa matrix, Biomaterials, 28, 4251 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. KZ Konakci, B Bohle, R Blumer, et al., Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery, Eur J Clin Invest, 35, 17 (2005)

    Article  CAS  PubMed  Google Scholar 

  48. CE Schmidt, JM Baier, Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering, Biomaterials, 21, 2215 (2000)

    Article  CAS  PubMed  Google Scholar 

  49. SY Chae, SY Chun, M Park et al., Development of renal extracellular matrix (ECM) scaffold for kidney regeneration, Tissue Eng Regen Med, 11, 1 (2014).

    Article  CAS  Google Scholar 

  50. DO Freytes, RM Stoner, SF Badylak, Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds, J Biomed Mater Res B Appl Biomater, 84, 408 (2008)

    Article  PubMed  Google Scholar 

  51. DW Jackson, GE Windler, TM Simon, Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament, Am J Sports Med, 18, 1 (1990)

    Article  CAS  PubMed  Google Scholar 

  52. MF Moreau, Y Gallois, MF Basle, et al., Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells, Biomaterials, 21, 369 (2000)

    Article  CAS  PubMed  Google Scholar 

  53. SS Gouk, TM Lim, SH Teoh, et al., Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling, J Biomed Mater Res B Appl Biomater, 84, 205 (2008)

    Article  PubMed  Google Scholar 

  54. QQ Qiu, P Leamy, J Brittingham, et al., Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant, J Biomed Mater Res B Appl Biomater, 91, 572 (2009)

    Article  PubMed  Google Scholar 

  55. DL Brutsaert, Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity, Physiol Rev, 83, 59 (2003)

    CAS  PubMed  Google Scholar 

  56. G Vunjak-Novakovic, N Tandon, A Godier, et al., Challenges in cardiac tissue engineering, Tissue Eng Part B Rev, 16, 169 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  57. NL Sussman, JH Kelly, Artificial liver: a forthcoming attraction, Hepatology, 17, 1163 (1993)

    CAS  PubMed  Google Scholar 

  58. M Deutsch, J Meinhart, M Vesely, et al., In vitro endothelialization of expanded polytetrafluoroethylene grafts: a clinical case report after 41 months of implantation, J Vasc Surg, 25, 757 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. L Brasile, BM Stubenitsky, MH Booster, et al., Overcoming severe renal ischemia: the role of ex vivo warm perfusion, Transplantation, 73, 897 (2002).

    Article  PubMed  Google Scholar 

  60. T Yamada, JJ Yang, NV Ricchiuti, et al., Oxygen consumption of mammalian myocardial cells in culture: measurements in beating cells attached to the substrate of the culture dish, Anal Biochem, 145, 302 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. A Rotem, M Toner, RG Tompkins, et al., Oxygen uptake rates in cultured rat hepatocytes, Biotechnol Bioeng, 40, 1286 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. NG Menon, ED Rodriguez, CK Byrnes, et al., Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model, Ann Plast Surg, 50, 523 (2003)

    Article  PubMed  Google Scholar 

  63. M Radisic, VG Fast, OF Sharifov, et al., Optical mapping of impulse propagation in engineered cardiac tissue, Tissue Eng Part A, 15, 851 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. G Orlando, P Baptista, M Birchall, et al., Regenerative medicine as applied to solid organ transplantation: current status and future challenges, Transpl Int, 24, 223 (2011).

    Article  PubMed  Google Scholar 

  65. A Kanematsu, S Yamamoto, M Ozeki, et al., Collagenous matrices as release carriers of exogenous growth factors, Biomaterials, 25, 4513 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. S Miyamoto, BZ Katz, RM Lafrenie, et al., Fibronectin and integrins in cell adhesion, signaling, and morphogenesis, Ann N Y Acad Sci, 857, 119 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Gyun Kwon.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, S.Y., Oh, S.H., Yoo, J.J. et al. 탈세포 장기 지지체의 제조 및 분석기법. Tissue Eng Regen Med 12 (Suppl 1), 1–10 (2015). https://doi.org/10.1007/s13770-014-0421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0421-0

Keywords

Navigation