Skip to main content

Advertisement

Log in

Digital and real-habitat modeling of Hipparchia statilinus based on hyper spectral remote sensing data

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The abandonment of military areas leads to succession processes affecting valuable open-land habitats and is considered to be a major threat for European butterflies. We assessed the ability of hyper spectral remote sensing data to spatially predict the occurrence of one of the most endangered butterfly species (Hipparchia statilinus) in Brandenburg (Germany) on the basis of habitat characteristics at a former military training area. Presence–absence data were sampled on a total area of 36 km2, and N = 65 adult individuals of Hipparchia statilinus could be detected. The floristic composition within the study area was modeled in a three-dimensional ordination space. Occurrence probabilities for the target species were predicted as niches between ordinated floristic gradients by using Regression Kriging of Indicators. Habitat variance could be explained by up to 81 % with spectral variables at a spatial resolution of 2 × 2 m by transferring PLSR models to imagery. Ordinated ecological niche of Hipparchia statilinus was tested against environmental predictor variables. N = 6 variables could be detected to be significantly correlated with habitat preferences of Hipparchia statilinus. They show that Hipparchia statilinus can serve as a valuable indicator for the evaluation of the conservation status of Natura 2000 habitat type 2330 (inland dunes with open Corynephorus and Agrostis grasslands) protected by the Habitat Directive (Council Directive 92/43/EEC). The authors of this approach, conducted in August 2013 at Döberitzer Heide Germany, aim to increase the value of remote sensing as an important tool for questions of biodiversity research and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrew M, Ustin S (2009) Habitat suitability modelling of an invasive plant with advanced remote sensing data. Divers Distrib 15:627–640

    Article  Google Scholar 

  • Balbontin J (2005) Identifying suitable habitat for dispersal in Bonelli’s eagle: an important issue in halting its decline in Europe. Biol Conserv 126:74–83

    Article  Google Scholar 

  • Bellis LM, Pidgeon AM, Radeloff VC, St-Louis V, Navarro JL, Martella MB (2008) Modeling habitat suitability for Greater Rheas based on satellite image texture. Ecol Appl 18(8):1956–1966

    Article  Google Scholar 

  • Binot-Hafke M, Balzer S, Becker N, Gruttke H, Haupt H,Hofbauer N, Ludwig G, Matzke-Hajek G Strauch M (2011) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 3: Wirbellose Tiere (Teil 1) Bundesamt für Naturschutz, Naturschutz und Biologische Vielfalt 70 (3), Bonn-Bad Godesberg

  • Carvell C (2002) Habitat use and conservation of bumblebees (Bombus spp.) under different grassland management regimes. Biol Conserv 103(1):33–49

    Article  Google Scholar 

  • Clark RN, King TVV, Gorelick NS (1987) Automatic continuum analysis of reflectance spectra. In: Proceedings of third AIS workshop, 2–4 June, 1987, JPL Publication 87-30. Jet Propulsion Laboratory, Pasadena, CA, pp 138–142

  • Cumming GS (2000) Using habitat models to map diversity: pan-African species richness of ticks (Acari: ixodida). J Biogeogr 27(2):425–440

    Article  Google Scholar 

  • Eitschberger U, Reinhardt R, Steiniger H (1991) Wanderfalter in Europa. In: Gesellschaft zur Förderung der Erforschung von Insektenwanderungen in Deutschland e.V., München (Hrsg.): Atalanta. Nr. 22, DFZS, Marktleuthen

  • European Commission (2005a) Note to the Habitats Committee. Assessment, monitoring and reporting of conservation status-preparing the 2001–2007 report under Article 17 of the Habitats Directive. DocHab-04-03/03 re.3.Brussels: European Commission

  • European Commission (2005b) LIFE focus/LIFE, Natura 2000 and the military. http://ec.europa.eu/environment/life/publications/lifepublications/lifefocus/documents/military_en.pdf

  • European Commission (2009) Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds (79/409/EEC)

  • Frick A (2007) Beiträge höchstauflösender Satellitenfernerkundung zum FFH-Monitoring—Entwicklung eines wissensbasierten Klassifikationsverfahrens und Anwendung in Brandenburg. Dissertation, Technische Universität Berlin

  • Frick A, Weyer G, Kenneweg H, Kleinschmit B (2005) A knowledge-based approach to vegetation monitoring with QuickBird imagery. In: Proceedings of the ISPRS Workshop 2005: high-resolution earth imaging for geospatial information, Hannover, 17–20 May, 2005

  • Gelbrecht J, Dommain R, Rödel I, Renner W (2001a) Aktueller Stand der Verbreitung von Hipparchia statilinus (HUFNAGEL 1766) in Brandenburg. Lepidoptera:Satyrinae Märkische Ent Nachr 3(1):21–25

  • Gelbrecht J, Eichstädt D, Göritz U, Kallies A, Kühne L, Richert A, Rödel I, Sobczyk T, Weidlich M (2001b) Gesamtartenliste und Rote Liste der Schmetterlinge („Macrolepidoptera“) des Landes Brandenburg. Naturschutz und Landschaftspflege in Brandenburg 10(3) Beilage:1–62

  • Gottschalk TK, Huettmann F, Ehlers M (2005) Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: a review. Int J Remote Sens 26(12):2631–2656

    Article  Google Scholar 

  • Gross JE, Hansen AJ, Goetz SJ, Theobald DM, Melton FS, Piekielek NB, Nemani RR (2012) Remote sensing for inventory and monitoring of U.S. National Parks. In: Wang Y (2012) Remote sensing of protected lands. pp 29–56. CRC Press, Boca Raton

  • Havlick DG (2011) Disarming nature: converting military lands to wildlife refuges. Geogr Rev 101(2):183–200 (the American Geographical Society of New York)

  • Hengl T, Toomanian N, Reuter HI, Malakouti MJ (2007) Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma 140(4):417–427

    Article  Google Scholar 

  • Hepinstall JA, Sander SA (1997) Using Bayesian statistics, thematic mapper satellite imagery, and breeding bird data to model bird species probability of occurence in Maine. Photogram Eng Remote Sens 63:1231–1237

    Google Scholar 

  • Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18(6):299–305

    Article  Google Scholar 

  • Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27

    Article  Google Scholar 

  • Kühne L, Gelbrecht J (1997) Zur Faunistik und Ökologie der Schmetterlinge in der Mark Brandenburg. VII. Verbreitung und Ökologe von Hipparchia statilinus -in der Mark Brandenburg und den südlich angrenzenden Gebieten der Oberlausitz. (Lep., Satyrldae). Ent Nachr Ber 41:27–32

    Google Scholar 

  • Lausch A, Pause M, Merbach I, Zacharias S, Doktor D, Volk M, Seppelt R (2013) A new multi-scale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field and landscape. Environ Monit Assess 185(2):1215–1235

    Article  Google Scholar 

  • Luft L, Neumann C, Freude M, Blaum N, Jeltsch F (2014) Hyperspectral modeling of ecological indicators—a new approach for monitoring former military training areas. Ecol Ind 46:264–285

    Article  Google Scholar 

  • LUGV (2011) Bericht zum Workshop Monitoring in der Döberitzer Heide, conference transcript Landesumweltamt Brandenburg http://www.mugv.brandenburg.de/cms/media.php/lbm1.a.2338.de/doeberitz_fb_123_web.pdf

  • Luoto M, Kuussaari M, Toivonen T (2002) Modeling butterfly distribution based on remote sensing data. J Biogeogr 29:1027–1037

    Article  Google Scholar 

  • Luoto M, Virkkala R, Heikkinen R, Rainio K (2004) Predicting bird species richness using remote sensing in boreal agricultural-forest mosaic. Ecol Appl 14:1946–1962

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  CAS  Google Scholar 

  • Matheron G (1971) The theory of regionalized variables and its applications, vol 5. Ecole nationale supérieure des mines de Paris

  • Mladenoff DJ, Sickley TA, Haight RG, Wydeve AP (1995) A regional landscape analysis and prediction of favorable gray wolf habitat in Northern Great Lakes Region. Conserv Biol 9(2):279–294

    Article  Google Scholar 

  • Morrison ML, Marcot BG, Mannan RW (1998) Wildlife-habitat relationships—concepts and applications, 2nd edn. University of Wisconsin Press, Madison

    Google Scholar 

  • Mücher CA, Kooistra L, Vermeulen M, Borre JV, Haest B, Haveman B (2013) Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery. Ecol Ind 33:71–81

    Article  Google Scholar 

  • Nagelkerke NJ (1991) A note on a general definition of the coefficient of determination. Biometrika 78(3):691–692

    Article  Google Scholar 

  • Neumann C (2010) Synthese von ökologischer Gradientenanalyse und hyperspektraler Fernerkundung zum Monitoring naturschutzfachlich bedeutsamer Offenlandschaften. Diploma thesis, University of Potsdam

  • Neumann C, Weiß G, Itzerott S, Kühling M, Fürstenow J, Luft L, Nitschke P (2013) Entwicklung und Erprobung eines innovativen, naturschutzfachlichen Monitoringverfahrens auf der Basis von Fernerkundungsdaten am Beispiel der Döberitzer Heide, Brandenburg: Abschlussbericht, (Scientific Technical Report, 13/02). Deutsches GeoForschungsZentrum GFZ, Potsdam

    Google Scholar 

  • Osborne PE, Alonso JC, Bryant RG (2001) Modeling landscape-scale habitat use using GIS and remote sensing: a case study with great bustard. J Appl Ecol 38:458–471

    Article  Google Scholar 

  • Poole A, Pienkowski M, McCracken DI, Petretti F, Brédy C and Deffeyes C (1998) Mountain livestock farming and EU policy development. In: Proceedings of the fifth European forum on nature conservation

  • Posillico M, Meriggi A, Pagnin E, Lovari S, Russo L (2004) A habitat model for brown bear conservation and land use planning in central Apennines. Conserv Biol 118:141–150

    Article  Google Scholar 

  • Rocchini D, Balkenhol N, Carter GA, Foody GM, Gillespie TW, He KS, Kark S, Levin N, Lucas K, Luoto M, Nagendra H, Oldeland J, Ricotta C, Southworth J, Neteler M (2010) Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol Inform 5:318–329

    Article  Google Scholar 

  • Sardà-Palomera F, Puigcerver M, Brotons L, Rodríguez-Teijeiro JD (2012) Modelling seasonal changes in the distribution of Common quail Coturnix coturnix in farmland landscapes using remote sensing. Ibis 154:703–713

  • Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  • Schmidtlein S, Feilhauer H, Bruelheide H (2012) Mapping plant strategy types using remote sensing. J Veg Sci 23(3):395–405

    Article  Google Scholar 

  • Schröder B (2000) Zwischen Naturschutz und Theoretischer Ökologie: Modelle zur Habitateignung und räumlichen Populationsdynamik für Heuschrecken im Niedermoor. Dissertation, TU Braunschweig

  • Schröder B, Reineking B (2004) Modellierung der Art-Habitat-Beziehung—ein Überblick über die Verfahren der Habitatmodellierung. In Dormann CF, Blaschke T, Lausch A, Schröder B, Söndgerath D (2003) Habitatmodelle—Methodik, Anwendung, Nutzen. Conference transcript workshop 8–10. 10.2003,UFZ Leipzig. UFZ-transcript 9/2004, p 178

  • Schröder E, Balzer S, Ellwanger G (2008) Die Situation der Heiden und Sandtrockenrasen in Deutschland. Abhandlungen aus d. Westfälischen Museum f. Naturkunde 70 (3/4):245–260

  • Schubert R, Hilbig W, Klotz S (1995) Bestimmungsbuch der Pflanzengesellschaften Mittel- und Norddeutschlands. G. Fischer Vlg, Jena

    Google Scholar 

  • Simmat U (2011) Eingeführte Großsäuger. In: LUGV (ed) Monitoring in der Döberitzer Heide. Conference transcript LUGV Brandenburg, pp 55–61

  • Steiner R, Trusch R (2000) Eiablageverhalten und -habitat von Hipparchia statilinus in Brandenburg (Lepidoptera: Nymphalidae: Satyrinae)/Egg-laying Behaviour of Hipparchia statilinus in Eastern Germany (Lepidoptera; Nymphalidae: Satyrinae). Stuttgarter Beiträge zur Naturkunde, Serie A (Biologie) 606

    Google Scholar 

  • Tucker MG, Heath MF (1994) Birds in Europe: their conservation status, vol 3. BirdLife International, BirdLife Conservation Series, Cambridge

  • Van Swaay C, Cuttelod A, Collins S, Maes D, Munguira ML, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhof I (2010) European red list of butterflies. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Vanden Borre JV, Paelinckx D, Müchen CA, Kooistra L, Haest B, de Blust G, Schmidt AM (2011) Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward. J Nature Conserv 19:116–125

    Article  Google Scholar 

  • Walker K, Pywell R (2000) Grassland communities on Salisbury Plain Training Area (SPTA): results of the ITE ecological survey. Wiltshire Bot 3:15–27

    Google Scholar 

  • Wang Y (2012) Remote sensing of protected lands. CRC Press, Taylor & Francis Group, Boca Raton

  • Wang H, Gao J, Ren L-L, Kong Y, Li H, Li L (2013) Assessment of the red-crowned crane habitat in the Yellow River Delta Nature Reserve, East China. Reg Environ Change 13:115–123

    Article  Google Scholar 

  • Warren SD, Holbrook SW, Dale DA, Whelan NL, Elyn M, Grimm W, Jentsch A (2007) Biodiversity and the heterogeneous disturbance regime on military training lands. Restor Ecol 15(4):606–612

    Article  Google Scholar 

  • Weidemann H-J (1995) Tagfalter beobachten, bestimmen. Naturbuch-verlag, Augsburg

    Google Scholar 

  • Weiers S, Bock M, Wissen M, Rossner G (2004) Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods. Landsc Urban Plan 67(1):43–65

    Article  Google Scholar 

  • Williams CB(1961) Die Wanderflüge der Insekten. Einführung in das Problem des Zugverhaltens der Insekten unter besonderer Berücksichtigung der Schmetterlinge. Paul Parey, Hamburg, Berlin

  • Wold H (1966) Estimation of principal components and related models by iterative least squares. Multivar Anal 1:391–420

    Google Scholar 

Download references

Acknowledgments

We thank the team of the Sielmanns Naturlandschaft Döberitzer Heide gGmbH for supporting our studies. Special thanks to Martin Wiemers, Gregor Stuhldreher, Oliver Schmitz, Matthias Kühling, Klaus Dörbandt and Bernd Schulze who shared expert knowledge as well as to all the others enabling great butterfly-days at the study area. We also thank the University of Potsdam and the Helmholtz Centre Potsdam (GFZ) for supporting a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Luft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luft, L., Neumann, C., Itzerott, S. et al. Digital and real-habitat modeling of Hipparchia statilinus based on hyper spectral remote sensing data. Int. J. Environ. Sci. Technol. 13, 187–200 (2016). https://doi.org/10.1007/s13762-015-0859-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0859-1

Keywords

Navigation