Skip to main content
Log in

Kinetics of oxytetracycline sorption on magnetite nanoparticles

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (nano-Fe) have been widely used in environmental remediation, including that of emerging contaminants, such as antibiotics. Magnetite nanoparticles (nano-Fe3O4) have been reported to form on the outer surface of nano-Fe and have the potential to be a good sorbent for certain antibiotics. This study reports, for the first time, the kinetics and thermodynamics of adsorption of a common tetracycline group antibiotic, oxytetracycline (OTC), on nano-Fe3O4. Batch sorption kinetics were evaluated by varying initial OTC concentration (0.25–2 mM), nano-Fe3O4 concentration (2.5–20 g L−1), pH (3.8–7.6), temperature (5, 15, 35 °C), and ionic strength (0.01–0.5 M KCl) to derive thermodynamic and kinetic constants. Results show that OTC sorption kinetics is rapid and increases with increasing temperature. The derived thermodynamic constants suggest a surface chemical-controlled reaction that proceeds via an associative mechanism. Results indicate the potential of developing a nano-magnetite-based remediation system for tetracycline group of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atwood JD (1985) Inorganic and organometallic reaction mechanisms. VCH, New York

    Google Scholar 

  • Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  Google Scholar 

  • Boxall A, Kolpin DW, Halling-Sørensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A–294A

    Article  CAS  Google Scholar 

  • Chang P-H, Li Z, Yu T-L, Munkhbayer S, Kuo T-H, Hung Y-C, Jean JS, Lin K-H (2009) Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater 165:148–155

    Article  CAS  Google Scholar 

  • Chu B, Goyne KW, Anderson SH, Lin C-H, Udawatta RP (2010) Veterinary antibiotic sorption to agroforestry buffer, grass buffer and cropland soils. Agrofor Syst 79:67–80

    Article  Google Scholar 

  • Crane RA, Dickison M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45:2931–2942

    Article  CAS  Google Scholar 

  • Davis JG, Truman CC, Kim SC, Ascough JC II, Carlson K (2006) Antibiotic transport via runoff and soil loss. J Environ Qual 35:2250–2260

    Article  CAS  Google Scholar 

  • Figueroa RA, Mackay AA (2005) Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environ Sci Technol 39:6664–6671

    Article  CAS  Google Scholar 

  • Fritz JW, Zuo Y (2007) Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem 105:1297–1301

    Article  CAS  Google Scholar 

  • Furukawa Y, Kim J-W, Watkins J, Wilkin RT (2002) Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ Sci Technol 36:5469–5475

    Article  CAS  Google Scholar 

  • Gu C, Karthikeyan KG (2005) Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol 39:2660–2667

    Article  CAS  Google Scholar 

  • Hamscher G, Sczesny S, Hoper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    Article  CAS  Google Scholar 

  • Hays KF, Papelis C, Leckie J (1988) Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 125:717–726

    Article  Google Scholar 

  • Jones AD, Bruland GL, Agrawal SG, Vasudevan D (2005) Factors influencing the sorption of oxytetracycline to soils. Environ Toxicol Chem 24:761–770

    Article  CAS  Google Scholar 

  • Journey JS, Anderson RM, Essington ME (2010) The adsorption of 2-ketogluconate by goethite. Soil Sci Soc Am J 74:1119–1128

    Article  CAS  Google Scholar 

  • Keleti T (1983) Errors in the evaluation of Arrhenius and van’t Hoff plots. Biochem J 209:277–280

    CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US stream, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Kulshrestha P, Giese RF, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105

    Article  CAS  Google Scholar 

  • Kummerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434

    Article  Google Scholar 

  • Lasaga AC (1981) Rate laws of chemical reactions. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes, reviews in mineralogy, vol 8. Mineralogical Society of America, Washington, DC, pp 1–68

    Google Scholar 

  • Nagayama M, Cohen M (1962) The anodic oxidation of iron in neutral solution: 1. The nature and composition of the passive film. J Electrochem Soc 109:781–790

    Article  CAS  Google Scholar 

  • Phillips DH, Gu B, Watson DB, Roh Y (2003) Impact of sample preparation on mineralogical analysis of zero-valent iron reactive barrier materials. J Environ Qual 32:1299–1305

    Article  CAS  Google Scholar 

  • Pils JRV, Laird DA (2007) Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ Sci Technol 41:1928–1933

    Article  CAS  Google Scholar 

  • Rabolle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722

    Article  CAS  Google Scholar 

  • Rakshit S, Sarkar D, Elzinga E, Punamiya P, Datta R (2013) Sorption of oxytetracycline on magnetite-water interface. Appl Geochem (in revision)

  • Rubert KI, Pedersen JA (2006) Kinetics of oxytetracycline reaction with a hydrous manganese oxide. Environ Sci Technol 40:7216–7221

    Article  CAS  Google Scholar 

  • Scheckel KG, Sparks DL (2001) Temperature effects on nickel sorption kinetics at the mineral-water interface. Soil Sci Soc Am J 65:719–728

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  • Scott TB, Dickison M, Crane RA, Riba OR, Hughes G (2010) The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles. J Nanopart Res 12:1765–1775

    Article  CAS  Google Scholar 

  • Sparks DL (1989) Kinetics of soil chemical processes. Academic Press, San Diego

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  • Vasudevan D, Bruland GL, Torrance BS, Upchurch VG, MacKay AA (2009) pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma 151:68–76

    Article  CAS  Google Scholar 

  • Wang Y, Morin G, Ona-Naguema G, Juillot F, Calas G, Brown GE Jr (2011) Distinctive arsenic (V) trapping modes by magnetite nanoparticles induced by different sorption process. Environ Sci Technol 45:7258–7266

    Article  CAS  Google Scholar 

  • Watkinson AJ, Murby EJ, Costanzo SD (2007) Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res 41:4164–4176

    Article  CAS  Google Scholar 

  • Wehrli B, Ibric S, Stumm W (1990) Adsorption kinetics of vanadyl (IV) and chromium (III) to aluminum oxide: evidence for a two step mechanism. Colloid Surf 51:77–88

    Article  CAS  Google Scholar 

  • Yang W, Kan AT, Chen W, Tomson MB (2010) pH-dependent effect of zinc on arsenic adsorption to magnetite nanoparticles. Water Res 44:5693–5701

    Article  CAS  Google Scholar 

  • Zhang D, Niu H, Zhang X, Meng Z, Cai Y (2011) Strong adsorption of chlorotetracycline on magnetite nanoparticles. J Hazard Mater 192:1088–1093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Laying Wu of Montclair State University for her help with TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rakshit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakshit, S., Sarkar, D., Punamiya, P. et al. Kinetics of oxytetracycline sorption on magnetite nanoparticles. Int. J. Environ. Sci. Technol. 11, 1207–1214 (2014). https://doi.org/10.1007/s13762-013-0317-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0317-x

Keywords

Navigation