Skip to main content
Log in

Muscle architecture and its relationship with lower extremity muscle strength in multiple sclerosis

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

This study was planned to determine the muscle architecture (pennation angle, muscle fiber length, and muscle thickness) and its relationship to lower extremity muscle strength in patients with Multiple Sclerosis (pwMS). The muscle architecture (pennation angle, muscle fiber length, and muscle thickness) and lower extremity muscle strength were assessed in 33 pwMS [13 Relapsing–Remitting MS (RRMS), 5 Primary Progressive MS (PPMS), 5 Secondary Progressive MS (SPMS), and 11 matched healthy controls (HC)]. Muscle architecture features were assessed with ultrasonography and muscle strength were assessed with a digital hand-held dynamometer. The rectus femoris muscle thickness and pennation angle, gastrocnemius muscle thickness, and the tibialis anterior pennation angle were significantly lower in pwMS compared to HC (p < 0.05). The strength of hip flexors, hip extensors, knee extensors, foot plantar, and foot dorsi flexors were lower in pwMS. In PPMS group, muscle strength of hip flexors was lower than RRMS and SPMS groups, and muscle strength of foot dorsi flexors was lower than RRMS (p < 0.05). In pwMS, positive correlations were found, between knee flexor strength and biceps femoris pennation angle. Also knee extensor strength and rectus femoris fiber length and muscle thickness were correlated positively (p < 0.05). According to our results the muscle architecture is affected in MS. The determination of architectural changes of lower extremity muscles may guide the arrangement of optimal strength exercises in functional rehabilitation programs.

ClinicalTrials: NCT03766698.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ascherio A, Munger KL (2007) Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. https://doi.org/10.1002/ana.21117

    Article  PubMed  Google Scholar 

  2. Lassmann H (2019) Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol. https://doi.org/10.3389/fimmu.2018.03116

    Article  PubMed  PubMed Central  Google Scholar 

  3. Samaei A, Bakhtiary AH, Hajihasani A et al (2016) Uphill and downhill walking in multiple sclerosis: a randomized controlled trial. Int J MS Care. https://doi.org/10.7224/1537-2073.2014-072

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hayes HA, Gappmaier E, LaStayo PC (2011) Effects of high-intensity resistance training on strength, mobility, balance, and fatigue in individuals with multiple sclerosis: a randomized controlled trial. J Neurol Phys Ther. https://doi.org/10.1097/npt.0b013e31820b5a9d

    Article  PubMed  Google Scholar 

  5. Thoumie P, Mevellec E (2002) Relation between walking speed and muscle strength is affected by somatosensory loss in multiple sclerosis. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp.73.3.313

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schwid SR, Thornton CA, Pandya S et al (1999) Quantitative assessment of motor fatigue and strength in MS. Neurology. https://doi.org/10.1212/wnl.53.4.743

    Article  PubMed  Google Scholar 

  7. Abe T, Kumagai K, Brechue WF (2000) Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. https://doi.org/10.1097/00005768-200006000-00014

    Article  PubMed  Google Scholar 

  8. Ichinose Y, Kanehisa H, Ito M et al (1998) Morphological and functional differences in the elbow extensor muscle between highly trained male and female athletes. Eur J Appl Physiol Occup Physiol. https://doi.org/10.1007/s004210050394

    Article  PubMed  Google Scholar 

  9. Kawakami Y, Abe T, Fukunaga T (1993) Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol. https://doi.org/10.1152/jappl.1993.74.6.2740

    Article  PubMed  Google Scholar 

  10. Kawakami Y, Abe T, Kuno SY, Fukunaga T (1995) Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol. https://doi.org/10.1007/bf00964112

    Article  PubMed  Google Scholar 

  11. Kubo K, Kanehisa H, Takeshita D et al (2000) In vivo dynamics of human medial gastrocnemius muscle-tendon complex during stretch-shortening cycle exercise. Acta Physiol Scand. https://doi.org/10.1046/j.1365-201x.2000.00768.x

    Article  PubMed  Google Scholar 

  12. Kumagai K, Abe T, Brechue WF et al (2000) Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. https://doi.org/10.1152/jappl.2000.88.3.811

    Article  PubMed  Google Scholar 

  13. Blazevich AJ, Cannavan D, Coleman DR, Horne S (2007) Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00578.2007

    Article  PubMed  Google Scholar 

  14. Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. https://doi.org/10.1016/s1474-4422(17)30470-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. E-Lima KM, Carneiro SP, Alves DS, Peixinho CC, De Oliveira LF (2015) Assessment of muscle architecture of the biceps femoris and vastus lateralis by ultrasound after a chronic stretching program. Clin J Sport Med. https://doi.org/10.1097/jsm.0000000000000069

    Article  PubMed  Google Scholar 

  16. Blazevich AJ, Gill ND, Zhou S (2006) Intra-and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat. https://doi.org/10.1111/j.1469-7580.2006.00619.x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kellis E, Galanis N, Natsis K, Kapetanos G (2009) Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. J Biomech. https://doi.org/10.1016/j.jbiomech.2009.07.011

    Article  PubMed  Google Scholar 

  18. Agyapong-Badu S, Warner M, Samuel D et al (2014) Anterior thigh composition measured using ultrasound imaging to quantify relative thickness of muscle and non-contractile tissue: a potential biomarker for musculoskeletal health. Physiol Meas. https://doi.org/10.1088/0967-3334/35/10/2165

    Article  PubMed  Google Scholar 

  19. Hodges P, Pengel L, Herbert R, Gandevia S (2003) Measurement of muscle contraction with ultrasound imaging. Muscle Nerve. https://doi.org/10.1002/mus.10375

    Article  PubMed  Google Scholar 

  20. Battisti N, Milletti D, Miceli M et al (2018) Usefulness of a qualitative ultrasound evaluation of the gastrocnemius-soleus complex with the Heckmatt scale for clinical practice in cerebral palsy. Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2018.08.006

    Article  PubMed  Google Scholar 

  21. Wens I, Dalgas U, Vandenabeele F et al (2014) Multiple sclerosis affects skeletal muscle characteristics. PLoS ONE. https://doi.org/10.1371/journal.pone.0108158

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carroll CC, Gallagher PM, Seidle ME, Trappe SW (2005) Skeletal muscle characteristics of people with multiple sclerosis. Arch Phys Med Rehabil. https://doi.org/10.1016/j.apmr.2004.03.035

    Article  PubMed  Google Scholar 

  23. Methenitis S, Karandreas N, Spengos K et al (2016) Muscle fiber conduction velocity, muscle fiber composition, and power performance. Med Sci Sports Exerc. https://doi.org/10.1249/mss.0000000000000954

    Article  PubMed  Google Scholar 

  24. Kent-Braun J, Ng A, Castro M et al (1997) Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis. J Appl Physiol. https://doi.org/10.1152/jappl.1997.83.6.1998

    Article  PubMed  Google Scholar 

  25. Morse CI, Thom JM, Reeves ND et al (2005) In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol. https://doi.org/10.1152/japplphysiol.01186.2004

    Article  PubMed  Google Scholar 

  26. Thoumie P, Lamotte D, Cantalloube S et al (2005) Motor determinants of gait in 100 ambulatory patients with multiple sclerosis. Mult Scler. https://doi.org/10.1191/1352458505ms1176oa

    Article  PubMed  Google Scholar 

  27. Rietberg MB, Van Wegen EE, Kollen BJ, Kwakkel G (2014) Do patients with multiple sclerosis show different daily physical activity patterns from healthy individuals? Neurorehabil Neural Repair. https://doi.org/10.1177/1545968313520412

    Article  PubMed  Google Scholar 

  28. Sandroff B, Dlugonski D, Weikert M et al (2012) Physical activity and multiple sclerosis: new insights regarding inactivity. Acta Neurol Scand. https://doi.org/10.1111/j.1600-0404.2011.01634.x

    Article  PubMed  Google Scholar 

  29. Ng A, Miller R, Gelinas D, Kent-Braun JA (2004) Functional relationships of central and peripheral muscle alterations in multiple sclerosis. Muscle Nerve. https://doi.org/10.1002/mus.20038

    Article  PubMed  Google Scholar 

  30. Cofré-Lizama LE, Khan F, Lee PV, Galea MP (2016) The use of laboratory gait analysis for understanding gait deterioration in people with multiple sclerosis. Mult Scler. https://doi.org/10.1177/1352458516658137

    Article  PubMed  Google Scholar 

  31. Wurdeman SR, Huisinga JM, Filipi M, Stergiou N (2013) Multiple sclerosis alters the mechanical work performed on the body’s center of mass during gait. J Appl Biomech. https://doi.org/10.1123/jab.29.4.435

    Article  PubMed  Google Scholar 

  32. Ayvat F, Özçakar L, Ayvat E et al (2021) Effects of low vs. high frequency local vibration on mild-moderate muscle spasticity: ultrasonographical and functional evaluation in patients with multiple sclerosis. Mult Scler Relat Disord. https://doi.org/10.1016/j.msard.2021.102930

    Article  PubMed  Google Scholar 

  33. Yang YB, Zhang J, Leng ZP et al (2014) Evaluation of spasticity after stroke by using ultrasound to measure the muscle architecture parameters: a clinical study. Int J Clin Exp Med 7(9):2712

    PubMed  PubMed Central  Google Scholar 

  34. Hvid LG, Suetta C, Nielsen JH et al (2014) Aging impairs the recovery in mechanical muscle function following 4 days of disuse. Exp Gerontol. https://doi.org/10.1016/j.exger.2014.01.012

    Article  PubMed  Google Scholar 

  35. Moreau NG, Simpson KN, Teefey SA, Damiano DL (2010) Muscle architecture predicts maximum strength and is related to activity levels in cerebral palsy. Phys Ther. https://doi.org/10.2522/ptj.20090377

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hugos CL, Cameron MH (2019) Assessment and measurement of spasticity in MS: state of the evidence. Curr Neurol Neurosci Rep. https://doi.org/10.1007/s11910-019-0991-2

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gehlsen G, Beekman K, Assmann N et al (1986) Gait characteristics in multiple sclerosis: progressive changes and effects of exercise on parameters. Arch Phys Med Rehabil 67(8):536–539

    CAS  PubMed  Google Scholar 

  38. Dujmovic I, Radovanovic S, Martinovic V et al (2017) Gait pattern in patients with different multiple sclerosis phenotypes. Mult Scler Relat Disord. https://doi.org/10.1016/j.msard.2017.01.012

    Article  PubMed  Google Scholar 

  39. Lieber RL, Fridén J (2001) Clinical significance of skeletal muscle architecture. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200102000-00016

    Article  PubMed  Google Scholar 

  40. Ward SR, Eng CM, Smallwood LH, Lieber RL (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res. https://doi.org/10.1007/s11999-008-0594-8

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declared that this study has received no financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ZİKK, TF, HAÖ, AMN, AN, and NE; methodology: ZİKK, TF, HAÖ, AMN, AN, and NE; formal analysis and investigation: ZİKK, TF, HAÖ, and AMN; writing—original draft preparation: ZİKK, TF, HAÖ, and AMN; writing—review and editing: ZİKK, TF, HAÖ, AMN, AN, and NE; supervision: ZİKK, TF, HAÖ, AMN, AN, and NE.

Corresponding author

Correspondence to Zekiye İpek Katirci Kirmaci.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All participants provided informed consent prior to their participatıon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirmaci, Z.İ.K., Firat, T., Özkur, H.A. et al. Muscle architecture and its relationship with lower extremity muscle strength in multiple sclerosis. Acta Neurol Belg 122, 1521–1528 (2022). https://doi.org/10.1007/s13760-021-01768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-021-01768-1

Keywords

Navigation