Skip to main content

Advertisement

Log in

Bio-inspired dimensionality reduction for Parkinson’s disease (PD) classification

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Given the demand for developing the efficient Machine Learning (ML) classification models for healthcare data, and the potentiality of Bio-Inspired Optimization (BIO) algorithms to tackle the problem of high dimensional data, we investigate the range of ML classification models trained with the optimal subset of features of PD data set for efficient PD classification. We used two BIO algorithms, Genetic Algorithm (GA) and Binary Particle Swarm Optimization (BPSO), to determine the optimal subset of features of PD data set. The data set chosen for investigation comprises 756 observations (rows or records) taken over 755 attributes (columns or dimensions or features) from 252 PD patients. We employed MaxAbsolute feature scaling method to normalize the data and one hold cross-validation method to avoid biased results. Accordingly, the data is split in to training and testing set in the ratio of 70% and 30%. Subsequently, we employed GA and BPSO algorithms separately on 11 ML classifiers (Logistic Regression (LR), linear Support Vector Machine (lSVM), radial basis function Support Vector Machine (rSVM), Gaussian Naïve Bayes (GNB), Gaussian Process Classifier (GPC), k-Nearest Neighbor (kNN), Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP), Ada Boost (AB) and Quadratic Discriminant Analysis (QDA)), to determine the optimal subset of features (reduction of dimensionality) contributing to the highest classification accuracy. Among all the bio-inspired ML classifiers employed: GA-inspired MLP produced the maximum dimensionality reduction of 52.32% by selecting only 359 features and delivering 85.1% of the classification accuracy; GA-inspired AB delivered the maximum classification accuracy of 90.7% producing the dimensionality reduction of 41.43% by selecting only 441 features; And, BPSO-inspired GNB produced the maximum dimensionality reduction of 47.14% by selecting 396 features and delivering the classification accuracy of 79.3%; BPSOMLP delivered the maximum classification accuracy of 89% and produced 46.48% of the dimensionality reduction by selecting only 403 features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348(14):1356–64.

    Google Scholar 

  2. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.

    Google Scholar 

  3. Meigal A Iu, Rissanen S, Tarvainen MP, Karjalainen PA, Iudina-Vassel IA, Airaksinen O, Kankaanpää M . Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. J Electromyogr Kinesiol. 2009;19(3):e206–13.

    Google Scholar 

  4. Lowit A, Dobinson C, Timmins C, Howell P, Kröger B. The effectiveness of traditional methods and altered auditory feedback in improving speech rate and intelligibility in speakers with Parkinson’s disease. Int J Speech Lang Pathol. 2010;12(5):426–36.

    Google Scholar 

  5. Archenaa J, Mary Anita EA. A survey of big data analytics in healthcare and government. Proc Comput Sci. 2015;50:408–13.

    Google Scholar 

  6. Kankanhalli A, Hahn J, Tan S, Gao G. Big data and analytics in healthcare: introduction to the special section. Inform Syst Front. 2016;18(2):233–5.

    Google Scholar 

  7. Chen M, Hao Y, Hwang K, Wang L, Wang L. Disease prediction by machine learning over big data from healthcare communities. IEEE Access. 2017;5:8869–79.

    Google Scholar 

  8. Haq AUl, Li JP, Memon MH, Malik A, Ahmad T, Ali A, Nazir S, Ahad I, Shahid M, et al. Feature selection based on l1-norm support vector machine and effective recognition system for Parkinson’s disease using voice recordings. IEEE Access. 2019;7:37718–34.

    Google Scholar 

  9. Peker M, Sen B, Delen D. Computer-aided diagnosis of Parkinson’s disease using complex-valued neural networks and MRMR feature selection algorithm. J Healthc Eng. 2015;6(3):281–302.

    Google Scholar 

  10. Peker M. A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM. J Med Syst. 2016;40(5):116.

    Google Scholar 

  11. Sakar BE, Serbes G, Sakar CO. Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson’s disease. PLoS ONE. 2017;12(8):e0182428.

    Google Scholar 

  12. Zhu X, Davidson I. Knowledge discovery and data mining: challenges and realities. Hershey: Information Science Reference; 2007.

    Google Scholar 

  13. Kantardzic M. Data mining: concepts, models, methods, and algorithms. New York: Wiley; 2011.

    MATH  Google Scholar 

  14. Darwish A. Bio-inspired computing: algorithms review, deep analysis, and the scope of applications. Future Comput Inform J. 2018;3(2):231–46.

    Google Scholar 

  15. Haldar S. Particle swarm optimization supported artificial neural network in detection of Parkinson’s disease. J Comput Eng. 2016;18(5):24.

    Google Scholar 

  16. Houassi H, Mahdaoui R, Toufik MM. Pso with crossover operator applied to feature selection problem in classification. Informatica. 2018;42(2):189–98.

    Google Scholar 

  17. Jabor AH, Ali AH. Dual heuristic feature selection based on genetic algorithm and binary particle swarm optimization. J Univ Babylon. 2019;27(1):171–85.

    Google Scholar 

  18. Martinez-Manzanera O, Roosma E, Beudel M, Borgemeester RWK, van Laar Teus, Maurits Natasha M. A method for automatic and objective scoring of bradykinesia using orientation sensors and classification algorithms. IEEE Trans Biomed Eng. 2015;63(5):1016–24.

    Google Scholar 

  19. Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO. Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans Biomed Eng. 2012;59(5):1264–71.

    Google Scholar 

  20. Tsanas A, Little MA, Fox C, Ramig LO. Objective automatic assessment of rehabilitative speech treatment in Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng. 2013;22(1):181–90.

    Google Scholar 

  21. Ali L, Zhu C, Golilarz NA, Javeed A, Zhou M, Liu Y. Reliable Parkinson’s disease detection by analyzing handwritten drawings: construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model. IEEE Access. 2019;7:116480–9.

    Google Scholar 

  22. Drotár P, Mekyska J, Rektorová I, Masarová L, Smékal Zdeněk, Faundez-Zanuy Marcos. Decision support framework for Parkinson’s disease based on novel handwriting markers. IEEE Trans Neural Syst Rehabil Eng. 2014;23(3):508–16.

    Google Scholar 

  23. Sujata D, Ruppa T, Parimala T, An enhanced chaos-based firefly model for Parkinson’s disease diagnosis and classification. In: 2017 international conference on information technology (ICIT), pp. 159–164. IEEE, 2017.

  24. Shen L, Chen H, Zhe Y, Kang W, Zhang B, Li H, Yang B, Liu D. Evolving support vector machines using fruit fly optimization for medical data classification. Knowl Based Syst. 2016;96:61–75.

    Google Scholar 

  25. Cai Z, Jianhua G, Chen H-L. A new hybrid intelligent framework for predicting Parkinson’s disease. IEEE Access. 2017;5:17188–200.

    Google Scholar 

  26. Lahmiri S, Shmuel A. Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine. Biomed Signal Process Control. 2019;49:427–33.

    Google Scholar 

  27. Shahab S, Somayeh H, Vahdat S, Asl IM, Kazemipoor M, Rabczuk T. Parkinson’s disease detection using biogeography-based optimization. Comput Mater Contin. 2019;61:11–26.

    Google Scholar 

  28. Shrivastava Prashant, Shukla Anupam, Vepakomma Praneeth, Bhansali Neera, Verma Kshitij. A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease. Comput Methods Programs Biomed. 2017;139:171–9.

    Google Scholar 

  29. Salmanpour MR, Shamsaei M, Saberi A, Setayeshi S, Taherinezhad E, Klyuzhin IS, Tang J, Sossi V, Rahmim A. Machine learning methods for optimal prediction of outcome in Parkinson’s disease. In: 2018 IEEE nuclear science symposium and medical imaging conference proceedings (NSS/MIC), IEEE, 2018, pp. 1–5.

  30. Qiang L, Huiling C, Hui H, Xuehua Z, ZhenNao C, Changfei T, Wenbin L, Xin T. An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Comput Math Methods Med. 2017;. https://doi.org/10.1155/2017/9512741.

    Article  Google Scholar 

  31. Pahuja G, Nagabhushan TN. A novel GA-ELM approach for Parkinson’s disease detection using brain structural t1-weighted MRI data. In: 2016 second international conference on cognitive computing and information processing (CCIP), IEEE, 2016, pp. 1–6.

  32. Mohammad RS, Mojtaba S, Abdollah S, Saeed S, Ivan SK, Vesna S, Arman R. Optimized machine learning methods for prediction of cognitive outcome in Parkinson’s disease. Comput Biol Med. 2019;111:103347.

    Google Scholar 

  33. Gürüler H. A novel diagnosis system for parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput Appl. 2017;28(7):1657–66.

    Google Scholar 

  34. Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng. 2009;57(4):884–93.

    Google Scholar 

  35. Palmerini L, Mellone S, Avanzolini G, Valzania F, Chiari L. Quantification of motor impairment in Parkinson’s disease using an instrumented timed up and go test. IEEE Trans Neural Syst Rehabil Eng. 2013;21(4):664–73.

    Google Scholar 

  36. Pham TT, Moore ST, John Geoffrey Lewis S, Nguyen DN, Dutkiewicz E, Fuglevand AJ, McEwan AL, Leong PHW. Freezing of gait detection in Parkinson’s disease: a subject-independent detector using anomaly scores. IEEE Trans Biomed Eng. 2017;64(11):2719–28.

    Google Scholar 

  37. Caramia C, Torricelli D, Schmid M, Muñoz-Gonzalez A, Gonzalez-Vargas J, Grandas F, Pons JL. Imu-based classification of Parkinson’s disease from gait: a sensitivity analysis on sensor location and feature selection. IEEE J Biomed Health Inform. 2018;22(6):1765–74.

    Google Scholar 

  38. Nilashi M, Ibrahim O, Samad S, Ahmadi H, Shahmoradi L, Akbari E. An analytical method for measuring the Parkinson’s disease progression: a case on a Parkinson’s telemonitoring dataset. Measurement. 2019;136:545–57.

    Google Scholar 

  39. Haijun L, Zhongwei H, Feng Z, Ahmed E, Ee-Leng T, Hancong L, Jing Q, Baiying L. Parkinson’s disease diagnosis via joint learning from multiple modalities and relations. IEEE J Biomed Health Inform. 2018;23(4):1437–49.

    Google Scholar 

  40. Palmerini L, Rocchi Laura, Mellone Sabato, Valzania Franco, Chiari Lorenzo. Feature selection for accelerometer-based posture analysis in Parkinson’s disease. IEEE Trans Inform Technol Biomed. 2011;15(3):481–90.

    Google Scholar 

  41. Prince John, Andreotti Fernando, De Vos Maarten. Multi-source ensemble learning for the remote prediction of Parkinson’s disease in the presence of source-wise missing data. IEEE Trans Biomed Eng. 2018;66(5):1402–11.

    Google Scholar 

  42. Malathi D, Logesh R. Intelligent cyber-physical system for an efficient detection of parkinson disease using fog computing. Multimed Tools Appl. 2018;. https://doi.org/10.1007/s11042-018-6898-0.

    Article  Google Scholar 

  43. Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. Biomed Eng Online. 2007;6(1):23.

    Google Scholar 

  44. Javier R, Diego C-B, Diego S-G, Fermin S. Deep convolutional autoencoders vs pca in a highly-unbalanced Parkinson’s disease dataset: a datscan study. In: International joint conference SOCO’18-CISIS’18-ICEUTE’18: San Sebastián, Spain, June 6–8, 2018 Proceedings. Springer, Berlin, 2018, vol. 771, p. 47.

  45. Gupta D, Sundaram S, Khanna A, Hassanien AE, De Albuquerque VHC. Improved diagnosis of Parkinson’s disease using optimized crow search algorithm. Comput Electr Eng. 2018;68:412–24.

    Google Scholar 

  46. Kemal P. A hybrid approach to Parkinson disease classification using speech signal: the combination of smote and random forests. In: 2019 scientific meeting on electrical-electronics & biomedical engineering and computer science (EBBT), IEEE, 2019, pp. 1–3.

  47. Shao J. Linear model selection by cross-validation. J Am Stat Assoc. 1993;88(422):486–94.

    MathSciNet  MATH  Google Scholar 

  48. An S, Liu W, Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognit. 2007;40(8):2154–62.

    MATH  Google Scholar 

  49. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12(Oct):2825–30.

    MathSciNet  MATH  Google Scholar 

  50. Martinsson P-G, Rokhlin V, Tygert M. A randomized algorithm for the decomposition of matrices. Appl Comput Harmon Anal. 2011;30(1):47–68.

    MathSciNet  MATH  Google Scholar 

  51. Olson Randal S, Moore Jason H. Tpot: A tree-based pipeline optimization tool for automating machine learning. Automated machine learning. Berlin: Springer; 2019. p. 151–60.

    Google Scholar 

  52. John H. Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control and artificial intelligence. Cambridge: MIT Press; 1975.

    MATH  Google Scholar 

  53. Dréo J, Pétrowski A, Siarry P, Taillard E. Metaheuristics for hard optimization: methods and case studies. New York: Springer; 2006.

    MATH  Google Scholar 

  54. Philip K. Optimization of feature selection in machine learning using genetic algorithms. http://www.philipkalinda.com/ds8.html, 2017.

  55. Russell E, James K. A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, (1995), pp. 39–43.

  56. Ghanad NK, Ahmadi S. Combination of pso algorithm and naive bayesian classification for Parkinson disease diagnosis. Adv Comput Sci. 2015;4(4):119–25.

    Google Scholar 

  57. Benmalek E, Elmhamdi J, Jilbab A. Effective detection of Parkinson’s disease at different stages using measurements of dysphonia. Indones J Electr Eng Inform. 2018;6(3):343–50.

    Google Scholar 

  58. Al-Tashi Q, Jadid Abdul Kadir S, Rais HMd, Mirjalili S, Alhussian H. Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access. 2019;7:39496–508.

    Google Scholar 

  59. Yiyuan C, Yufeng W, Liang C, Qun J. CCFS: a confidence-based cost-effective feature selection scheme for healthcare data classification. IEEE ACM Trans Comput Biol Bioinform. 2019;. https://doi.org/10.1109/TCBB.2019.2903804.

    Article  Google Scholar 

  60. Russell CE, Yuhui S, James K. Swarm intelligence. New York: Elsevier; 2001.

    Google Scholar 

  61. James K, Russell CE. A discrete binary version of the particle swarm algorithm. In: 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation, IEEE, 1997, vol. 5, pp. 4104–4108.

  62. Miranda LJV, et al. Pyswarms: a research toolkit for particle swarm optimization in python. J Open Source Softw. 2018;3(21):433.

    Google Scholar 

  63. Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Swarm Intell. 2007;1(1):33–57.

    Google Scholar 

  64. Zanaty EA. Support vector machines (svms) versus multilayer perception (mlp) in data classification. Egypt Inform J. 2012;13(3):177–83.

    Google Scholar 

  65. Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput. 2002;6(1):58–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Pasha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasha, A., Latha, P.H. Bio-inspired dimensionality reduction for Parkinson’s disease (PD) classification. Health Inf Sci Syst 8, 13 (2020). https://doi.org/10.1007/s13755-020-00104-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-020-00104-w

Keywords

Navigation