Skip to main content

Advertisement

Log in

Random extreme learning machines to predict electric load in buildings

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

The study of energy efficiency in buildings is an active field of research. Modeling and prediction of power-related magnitudes allow us to analyse the electrical consumption. This can lead to environmental and economical benefits. In this study we compare different techniques to predict active power consumed by buildings of the University of León (Spain). The original dataset contains time, environmental and electric data for 30 buildings. In our study we follow a two-step procedure: first, we grouped the buildings in terms of their electric load using principal component analysis (PCA) and k-medoids based clustering. From this clustering we selected three prototype buildings. Second, we have applied neural network-based machine learning techniques to carry out the prediction task. In particular, we used well-known multi layer perceptron (MLP) and extreme learning machine (ELM) algorithms, as well as a new model proposed in this paper which constitutes its major contribution: random extreme learning machines (RELM). Our analysis shows that RELM advantages MLP and ELM in labour days, which is the most interested case because of it highest electric demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. 1 toe = 1 tonne of oil equivalent = 11.63 MWh.

References

  1. Alonso, S.: Supervisión de la energía eléctrica en edificios públicos de uso docente basada en técnicas de minería de datos visual. Ph.D. thesis, Departamento de Ingeniería Eléctrica, Electrónica, de Computadores y Sistemas. Universidad de Oviedo (2012)

  2. Bian, X., Xu, Q., Li, B., Xu, L.: Equipment fault forecasting based on a two-level hierarchical model. In: 2007 IEEE International Conference on Automation and Logistics, pp. 2095–2099 (2007)

  3. Bishop, C.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)

    MATH  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Carpinteiro, O., Alves da Silva, A., Feichas, C.: A hierarchical neural model in short-term load forecasting. In: IJCNN (6), pp. 241–248 (2000)

  6. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall, USA (2009)

    Google Scholar 

  7. Huang, G., Zhu, Q., Siew, C.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  8. I.E.A. International Energy Agency.: Energy performance certification of buildings (2013)

  9. Jolliffe, I.: Principal Component Analysis. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  10. Kourentzes, N., Barrow, D.K., Crone, S.F.: Neural network ensemble operators for time series forecasting. Expert Syst. Appl. 41(9), 4235–4244 (2014)

    Article  Google Scholar 

  11. Kusiak, A., Li, M., Tang, F.: Modeling and optimization of HVAC energy consumption. Appl. Energy 87(10), 3092–3102 (2010)

    Article  Google Scholar 

  12. Ma, Y., Yu, J., Yang, C., Wang, L.: Study on power energy consumption model for large-scale public building. In: Proceedings of the 2nd international workshop on intelligent systems and applications, pp. 1–4 (2010)

  13. Mateo, F., Carrasco, J.J., Millán-Giraldo, M., Sellami, A., Escandell-Montero, P., Martínez-Martínez, J.M., Soria-Olivas, E.: Machine learning techniques for short-term electric power demand prediction. In: 21st European Symposium on Artificial Neural Networks, ESANN 2013, Bruges, Belgium, April 24–26 (2013)

  14. Ministerio de Fomento, Gobierno de España: Código Técnico de la Edificación (2010). http://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DBHE.pdf

  15. Paliwal, M., Kumar, U.: Neural networks and statistical techniques: a review of applications. Expert Syst. Appl. 36(1), 2–17 (2009)

    Article  Google Scholar 

  16. Soliman, S., Al-Kandari, A. (eds.): Electric load modeling for long-term forecasting. In: Electrical Load Forecasting, pp. 353–406. Butterworth-Heinemann, Boston (2010)

  17. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic, USA (2006)

    MATH  Google Scholar 

  18. Unión Europea.: Directiva 2006/32/CE del Parlamento europeo y del Consejo de 5 de abril sobre la eficiencia del uso final de la energía y los servicios energéticos (2006)

  19. Unión Europea.: Directiva 2012/27/UE del Parlamento europeo y del Consejo de 25 de octubre relativa a la eficiencia energéica (2012)

  20. US Department of Energy.: Buildings Energy Data Book (2010)

  21. Vellido, A., Lisboa, P., Vaughan, J.: Neural networks in business: a survey of applications (1992–1998). Expert Syst. Appl. 17(1), 51–70 (1999)

    Article  Google Scholar 

  22. Vergara, G., Cózar, J., Romero-González, C., Gámez, J.A., Soria-Olivas, E.: Comparing elm against mlp for electrical power prediction in buildings. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H., editors. Bioinspired Computation in Artificial Systems, Lecture Notes in Computer Science, vol. 9108, pp. 409–418. Springer International Publishing (2015)

  23. Willmott, C., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30(1), 79 (2005)

    Article  Google Scholar 

  24. Wong, S., Wan, K., Lam, T.: Artificial neural networks for energy analysis of office buildings with daylighting. Appl. Energy 87(2), 551–557 (2010)

    Article  Google Scholar 

  25. Yu, H., Wilamowski, B.: The Industrial Electronics Handbook, vol. 5. CRC, Boca Raton (2011)

    Google Scholar 

  26. Zhao, H., Magoulès, F.: Parallel support vector machines applied to the prediction of multiple buildings energy consumption. J. Algorithms Comput. Technol. 4(2), 231–249 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported with JCCM funds by means of the project PEII-2014-049-P. Authors want to thank the SUPRESS research group of the university of León for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Vergara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergara, G., Alonso-Barba, J.I., Soria-Olivas, E. et al. Random extreme learning machines to predict electric load in buildings. Prog Artif Intell 5, 129–135 (2016). https://doi.org/10.1007/s13748-015-0077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-015-0077-6

Keywords

Navigation