Skip to main content
Log in

Congruence and the Biomonitoring of Aquatic Ecosystems: Are Odonate Larvae or Adults the Most Effective for the Evaluation of Impacts

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Odonata have been widely used as indicators for the biomonitoring of terrestrial and aquatic habitats due to their sensitivity to environmental impacts. We aimed to determine whether the larval or adult phases of these insects were the best predictors of variation in habitat parameters and the loss of environmental integrity. Specimens were collected during three seasons (dry, rainy, and ebb) from 12 points in the Suiá-missu River basin, at the headwaters of the Xingu River in Mato Grosso, Brazil. The Protest analysis indicated a high degree of congruence between the assemblages of larvae and adults in streams with varying degrees of habitat integrity (R = 0.832, p < 0.001, m 2 = 0.307). When the congruence with environmental factors was analyzed, a significant association was found only for the larval phase (R = 0.318, p = 0.03, m 2 = 0.888). When the suborders were analyzed separately, congruence was confirmed for anisopteran adults (R = 0.338, p = 0.031, m 2 = 0.885) and larvae (R = 0.417, p = 0.003, m 2 = 0.826) and for the zygopteran adults (R = 0.345, p = 0.027, m 2 = 0.881) and larvae (R = 0.405, p = 0.011, m 2 = 0.836). These results indicate that both larvae and adults respond systematically to environmental impacts. We suggest that either life phase can be used for biomonitoring, given their effectiveness for the interpretation of disturbance in terrestrial and aquatic habitats. These findings further reinforce the effectiveness of this insect order for the detection of modifications to the environment, showing that they are good indicators of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol S 35:257–284

    Article  Google Scholar 

  • Belle J (1996) Higher classification of the South-American Gomphidae (Odonata). Zoologische Mededelingen 70:298–324

    Google Scholar 

  • Belle J (1998) A synopsis of the species of Phyllocycla Calvert with description of four new taxa and a key to the genera of the neotropical Gomphidae (Odonata, Gomphidae). Entomologie 131:73–102

    Google Scholar 

  • Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523

    Article  CAS  PubMed  Google Scholar 

  • Brasil LS, Batista JD, Giehl NFDS, Valadão MBX, Santos JOD, Dias-Silva K (2014) Environmental integrity and damselfly species composition in Amazonian streams at the “arc of deforestation” region, Mato Grosso, Brazil. Acta Limnologica Brasiliensia 26(3):278–287

    Article  Google Scholar 

  • Brasil LS, Shimano Y, Batista JD, Cabette HS (2013) Effects of environmental factors on community structure of Leptophlebiidae (Insecta, Ephemeroptera) in Cerrado streams. Brazil Iheringia Série Zoologia 103(3):260–265

    Article  Google Scholar 

  • Carle FL (1979) Environmental monitoring potential of the Odonata, with a list of rare and endangered Anisoptera of Virginia, United States. Odonatologica 8:319–323

    Google Scholar 

  • Chovanec A, Waringer J (2001) Ecological integrity of river–floodplain systems—assessment by dragonfly surveys (Insecta: Odonata). Regul River 17:493–507

    Article  Google Scholar 

  • Clayton DH, Bush SE, Johnson KP (2004) Ecology of congruence: past meets present. Syst Biol 53:165–173

    Article  PubMed  Google Scholar 

  • Corbet PS (1980) Biology of Odonata. Annu Rev Entomol 25:189–217

    Article  Google Scholar 

  • Corbet PS (1993) Are Odonata useful as bioindicators? Libellula 12:91–102

    Google Scholar 

  • Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Comstock Publ. Assoc, Ithaca

    Google Scholar 

  • D’amico F, Darblade S, Avignon S, Blanc-Manel S, Ormerod SJ (2004) Odonates as indicators of shallow lake restoration by liming: comparing adult and larval responses. Restor Ecol 12:439–446

    Article  Google Scholar 

  • Davies B, Day J (1998) Vanishing waters. University of Cape Town Press, Cape Town

    Google Scholar 

  • De Assis JC, Carvalho AL, Nessimian JL (2004) Composição e preferência por microhábitat de imaturos de Odonata (Insecta) em um trecho de baixada do River Ubatiba, Maricá-RJ, Brasil. Rev Bras Entomol 48:273–282

    Article  Google Scholar 

  • De Biasi AM, Bianchi CN, Morri C (2003) Analysis of macrobenthic communities at different taxonomic levels: an example from an estuarine environment in the Ligurian Sea (NW Mediterranean). Estuar Coast Shelf S 58:99–106

    Article  Google Scholar 

  • De Marco P Jr (1998) The Amazonian Campina dragonfly assemblage: patterns in microhabitat use and behaviour in a foraging habitat (Anisoptera). Odonatologica 27:239–248

    Google Scholar 

  • De Marco JP, Resende DC (2002) Activity patterns and thermoregulation in a tropical dragonfly assemblage. Odonatologica 31:129–138

    Google Scholar 

  • De Marco Jr P, Vianna DM (2005) Distribuição do esforço de coleta de Odonata no Brasil: subsídios para escolha de áreas prioritárias para levantamentos faunísticos. Lundiana, 6 (ssupplement)

  • Dethier MN, Schoch G (2006) Taxonomic sufficiency in distinguishing natural spatial patterns on an estuarine shoreline. Mar Ecol-Prog Ser 306:49

    Article  Google Scholar 

  • Dias-Silva K, Cabette HSR, Juen L, De Marco JP (2010) The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Rev Bras Zool 27:918–930

    Google Scholar 

  • Dolný A, Harabiš F, Bárta D, Lhota S, Drozd P (2012) Aquatic insects indicate terrestrial habitat degradation: changes in taxonomical structure and functional diversity of dragonflies in tropical rainforest of East Kalimantan. Trop Zool 25:141–157

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Flather CH, Wilson KR, Dean DJ, McComb WC (1997) Identifying gaps in conservation networks: of indicators and uncertainty in geographic-based analyses. Ecol Appl 7:531–542

    Article  Google Scholar 

  • Garrison RW, Von Ellenrieder N, Louton JA (2006) Dragonfly genera of the New World: an illustrated and annotated key to the Anisoptera. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Garrison RW, Von Ellenrieder N, Louton JA (2010) Damselfly genera of the New World: an illustrated and annotated key to the Zygoptera. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gaston KJ (2000) Biodiversity: higher taxon richness. Prog Phys Geogr 24

  • Gaston KJ, Williams PH (1996) Spatial patterns in taxonomic diversity. In: Gaston KJ (ed) Biodiversity: a biology of numbers and difference. Blackwell Science, Oxford, pp 202–229

    Google Scholar 

  • Gower JC (1975) Generalized Procrustes analysis. Psychometrika 40:33–51

    Article  Google Scholar 

  • Heckman CW (2006) Encyclopedia of South American aquatic insects: Odonata-Anisoptera. Illustrated keys to known families, genera, and species in South America. Springer Science & Business Media, Olympia Washington, USA, p 726

  • Heino J (2002) Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodivers Conserv 11:137–147

    Article  Google Scholar 

  • Heino J (2010) Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecol Indic 10:112–117

    Article  Google Scholar 

  • Heino J, Parviainen J, Paavola R, Jehle M, Louhi P, Muotka T (2005) Characterizing macroinvertebrate assemblage structure in relation to stream size and tributary position. Hydrobiologia 539:121–130

    Article  Google Scholar 

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology:2204–2214

  • Jackson DA (1995) PROTEST: a PROcrustean randomization TEST of community environment concordance. Ecoscience 2:297–303

    Article  Google Scholar 

  • Juen L, De Marco P Jr. (2011) Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents 4:265–274

  • Juen L, De Marco JP (2012) Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodivers Conserv 21:3507–3521

    Article  Google Scholar 

  • Juen L, Oliveira-Junior JMB, Shimano Y, Mendes TP, Cabette HSR (2014) Composição e riqueza de Odonata (Insecta) em riachos com diferentes níveis de conservação em um ecótone Cerrado-Floresta Amazônica. Acta Amazônica 44:175–184

    Article  Google Scholar 

  • Karr JR (1991) Biological integrity: a long-neglected aspect of water resource management. Ecol Appl 1:66–84

    Article  PubMed  Google Scholar 

  • Karr JR, Chu EW (1999) Restoring life in running waters: better biological monitoring. Island Press, Washington, DC

    Google Scholar 

  • Lee Foote A, Rice Hornung CL (2005) Odonates as biological indicators of grazing effects on Canadian prairie wetlands. Ecol Entomol 30:273–283

    Article  Google Scholar 

  • Lencioni FAA (2005) Damselflies of Brazil, an illustrated identification guide: I—the non-Coenagrionidae families, 1st edn. All Print Editora, São Paulo

    Google Scholar 

  • Lencioni FAA (2006) Damselflies of Brazil, an illustrated identification guide: II—Coenagrionidae families. All Print Editora, São Paulo

    Google Scholar 

  • Lindenmayer D, Barton P, Pierson J (2015) Indicators and surrogates of biodiversity and environmental change. Csiro Publishing, Melbourne p 216

  • Mancini L (2005) Organization of biological monitoring in the European Union. In: Ziglio G, Siligardi M, Flaim G (eds) Biological monitoring of rivers. Wiley, London, pp 171–201

    Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  CAS  PubMed  Google Scholar 

  • May ML (1976) Thermoregulation in adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecol Monogr 46:1–32

    Article  Google Scholar 

  • May ML (1991) Thermal adaptations of dragonflies, revisited. Advances in Odonatology 5:71–88

    Google Scholar 

  • Mendes TP, Cabette HSR, Juen L (2015) Setting boundaries: environmental and spatial effects on Odonata larvae distribution (Insecta). An Acad Bras Cienc 87:239–248

    Article  PubMed  Google Scholar 

  • Merritt DM, Scott ML, LeRoy P, Auble GT, Lytle DA (2010) Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshw Biol 55:206–225

    Article  Google Scholar 

  • Monteiro-Júnior CS, Juen L, Hamada N (2014) Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landscape Urban Plan 127:28–40

    Article  Google Scholar 

  • Montigny MK, MacLean DA (2005) Using heterogeneity and representation of ecosite criteria to select forest reserves in an intensively managed industrial forest. Biol Conserv 125:237–248

  • Neiss UG, Hamada N (2014) Ordem Odonata. IN: Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. (orgs) Hamada N, Nessimian JL, Querino RB 2014. Embrapa Meio-Norte-Livros científicos

  • Nessimian JL, Venticinque EM, Zuanon J, De Marco Jr P, Gordo M, Fidelis L, Batista JD, Juen L (2008) Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614:117–131

    Article  Google Scholar 

  • Norris RH, Norris KH (1995) The need for the biological assessment of water quality: Australian perspective. Aust J Ecol 20:1–6

    Article  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 12:822–835

    Google Scholar 

  • Oertli B, Biggs J, Céréghino R, Grillas P, Joly P, Lachavanne JB (2005) Conservation and monitoring of pond biodiversity: introduction. Aquat Conserv 15:535–540

    Article  Google Scholar 

  • Oliveira-Junior JMB, Cabette HSR, Silva-Pinto N, Juen L (2013) x Explicando a Riqueza de Espécies Pela Variabilidade Ambiental. EntomoBrasilis 6

  • Oliveira-Junior JMB, Shimano Y, Gardner TA, Hughes RM, De Marco JP, Juen L (2015) Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecol 40(6):733–744

    Article  Google Scholar 

  • Olsgard F, Somerfield PJ, Carr MR (1997) Relationships between taxonomic resolution and data transformations in analyses of a macrobenthic community along an established pollution gradient. Mar Ecol-Prog Ser 149:173–181

    Article  Google Scholar 

  • Paavola R, Muotka T, Virtanen R, Heino J, Jackson D, Mäki-Petäys A (2006) Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecol Appl 16:368–379

    Article  PubMed  Google Scholar 

  • Pearson DL (1994) Selecting indicator taxa for the quantitative assessment of biodiversity. Philos T Roy Soc B 345:75–79

    Article  CAS  Google Scholar 

  • Peres-Neto PR, Jackson DA, Somers KM (2003) Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology 84:2347–2363

    Article  Google Scholar 

  • Pressey RL, Humphries CJ, Margules CR, Vane-Wright RI, Williams PH (1993) Beyond opportunism—key principles for systematic reserve selection 8:124–28

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ratter JA, Askew GP, Montgomery RF, Gifford DR (1978) Observations on the vegetation of northeastern Mato Grosso II: forest and soils of the river Suiá-missu area. Philos T Roy Soc B 203:191–208

    Article  CAS  Google Scholar 

  • Rodriguez-Capítulo A (1992) Los Odonata de la Republica Argentina (Insecta). In: Castellanos ZA (ed) Fauna de agua dulce de la Republica Argentina. PROFADU (CONICET), La Plata, pp 1–91

    Google Scholar 

  • Rosenberg DM, Resh VH (1998) Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York

    Google Scholar 

  • Simaika JP, Samways MJ (2012) Using dragonflies to monitor and prioritize lotic systems: a south African perspective. Org Divers Evol 12:251–259

    Article  Google Scholar 

  • Smith J, Samways MJ, Taylor S (2007) Assessing riparian quality using two complementary sets of bioindicators. Biodivers Conserv 16:2695–2713

    Article  Google Scholar 

  • Smith MJ, Kay WR, Edward DHD, Papas PJ, Richardson KSJ, Simpson JC, Pinder AM, Cale DJ, Horwitz PHJ, Davis JA, Yung FH, Norris RH, Halse SA (1999) AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshw Biol 41:269–282

    Article  Google Scholar 

  • Souza HMDL, Cabette HS, Juen L (2011) Baetidae (Insecta, Ephemeroptera) of Cerrado streams in the state of Mato Grosso, Brazil, under different levels of environmental preservation. Iheringia Série Zoologia 101(3):181–190

    Article  Google Scholar 

  • Suh AN, Samways MJ (2005) Significance of temporal changes when designing a reservoir for conservation of dragonfly diversity. Biodivers Conserv 14:165–178

    Article  Google Scholar 

  • Tilman D (2000) Causes, consequences and ethics of biodiversity. Nature 405

  • Valente-Neto F, Roque FO, Rodriguesa ME, Juen L, Cm S (2016) Toward a practical use of Neotropical odonates as bioindicators: testing congruence across taxonomic resolution and life stages. Ecol Indic 61(2):952–959

    Article  Google Scholar 

  • Vianna DM, De Marco JP (2012) Higher-taxon and cross-taxon surrogates for odonate biodiversity in Brazil. J Nat Conserv 10:34–39

    Article  Google Scholar 

  • Whittaker RJ, Araújo MB, Paul J, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Wiens JA, Hayward GD, Holthausen RS, Wisdom MJ (2008) Using surrogate species and groups for conservation planning and management. Bioscience 58:241–252

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Laboratory of Entomology (Laboratório de Entomologia) at Nova Xavantina/UNEMAT and all the staff for the help in field. We also thank FAPEMAT for the Scientific Initiation scholarship granted to the student Thiago Pereira Mendes, which allowed him to dedicate his time exclusively to this project. The partners EMBRAPA, ISA, and NGOs related to Y Ikatu Xingu Campaign all provided incentives for this research. We are grateful to the Brazilian Higher Education Training Program (CAPES). We also thank CNPq for financial support (process no. 520268/2005-9), a research fellowship granted to Leandro Juen, and a postdoctoral fellowship to Joana Darc Batista (process no. 350790/2013-2). We are indebted to the specialist Frederico A. A. Lencioni for his help with the identification of the adult zygopterans. Finally, we thank the support of PROPESP/UFPA and FADESP for this publication, the Federal University of Pará (Universidade Federal do Pará—UFPA), and the Graduate Program in Zoology (programa de Pós-Graduação em Zoologia—PPGZOO, UFPA-MPEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T P Mendes.

Additional information

Edited by Fernando B Noll – UNESP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, T.P., Oliveira-Junior, J.M.B., Cabette, H.S.R. et al. Congruence and the Biomonitoring of Aquatic Ecosystems: Are Odonate Larvae or Adults the Most Effective for the Evaluation of Impacts. Neotrop Entomol 46, 631–641 (2017). https://doi.org/10.1007/s13744-017-0503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-017-0503-5

Keywords

Navigation