Skip to main content
Log in

Repellent Effect and Metabolite Volatile Profile of the Essential Oil of Achillea millefolium Against Aegorhinus nodipennis (Hope) (Coleoptera: Curculionidae)

  • Pest Management
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Aegorhinus nodipennis (Hope) (Coleoptera: Curculionidae) is an important native pest in fruit crops that is mainly found in European hazelnut fields in the south of Chile. We investigated the behavioral response of A. nodipennis to volatile compounds released from the essential oil of Achillea millefolium and its main constituent using olfactometric bioassays. Gas chromatographic and mass spectral analysis of the A. millefolium essential oil revealed the presence of 11 compounds. Monoterpene β-thujone (96.2%) was the main component of the oil. Other compounds identified were α-thujone, 1,8-cineole, p-cymene, and 4-terpineol, all with percentages below 1%. Both A. millefolium essential oil and thujone exhibited a repellent activity against this insect at the higher doses tested (285.7 ng/cm2), demonstrating their potential as repellents for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Abdelgaleil A, Mohamed M, Badawy M, El-Arami S (2009) Fumigant and contact toxicities of monoterpenes to Sitophilus zeamais (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J Chem Ecol 35:518–525

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Sattar E, Zaitoun A, Farag MA, Gayed SH, Harraz FM (2010) Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum. Nat Prod Res 24(3):226–235

    Article  CAS  PubMed  Google Scholar 

  • Aguilera A, Guerrero J, Rebolledo R (2011) Plagas y enfermedades del avellano europeo en La Araucanía Chile. Ediciones Universidad de La Frontera, Temuco, p 126

    Google Scholar 

  • Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr 1157:414–421

    Article  CAS  Google Scholar 

  • Barel S, Segal R, Yashphe J (1991) The antimicrobial activity of the essential oil from Achillea fragrantissima. J Ethnopharmacol 33:187–191

    Article  CAS  PubMed  Google Scholar 

  • Başer KHC, Demirci B, Demirci F, Kocak S, Akinci C, Malyer H, Guleryuz G (2002) Composition and antimicrobial activity of the essential oil of Achillea multifida. Planta Med 68:939–941

    Article  Google Scholar 

  • Benedek B, Kopp B (2007) Achillea millefolium L. s.l. revisited: recent findings confirm the traditional use. Wien Med Wochenschr 157:312–314

    Article  PubMed  Google Scholar 

  • Bloomquist JR (2003) Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol 54(4):145–156

    Article  CAS  PubMed  Google Scholar 

  • Coats R, Karr LL, Drewes CD (1991) Toxicity and neurotoxic effects of monoterpenoids in insects and earthworms. In: Hedin P (ed) Natural occurring pest bioregulators, vol 449, American Chemical Society Symposium Series., pp 305–316

    Chapter  Google Scholar 

  • Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 107:1455–1461

    Article  PubMed  Google Scholar 

  • Debboun M, Frances SP, Strickman DA (2006) Insect repellents: principles, methods, and uses. CRC Press, London, p 495

  • Duke JA (2004) Dr. Duke’s phytochemical and ethnobotanical databases. http://www.ars-grin.gov/duke/ Accessed 1 April 2014

  • Enan EE (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Phys C 130(3):325–337

    CAS  Google Scholar 

  • Enan EE (2005) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol 59(3):161–171

    Article  CAS  PubMed  Google Scholar 

  • Evans PD, Robb S (1993) Octopamine receptor subtypes and their modes of action. Neurochem Res 18(8):869–874

    Article  CAS  PubMed  Google Scholar 

  • García M, Donadel OJ, Ardanaz CE, Tonn CE, Sosa ME (2005) Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manag Sci 61:612–618

    Article  PubMed  Google Scholar 

  • Gleiser RM, Zygadlo JA (2007) Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 101:1349–1354

    Article  PubMed  Google Scholar 

  • Grundy DL, Still CC (1985) Inhibition of acetylcholinesterases by pulegone1, 2- epoxide. Pestic Biochem Phys 23:383–388

    Article  CAS  Google Scholar 

  • Guenter E (1972) The essential oils. Krieger Publishing Company, Florida, p 427

    Google Scholar 

  • Hachey JM, Collin GJ, Gagnon MJ, Simard S, Dufour S, Jean FI, Vernin G, Fraisse D (1990) Extraction and GC/MS analysis of the essential oil of Achillea millefolium L. complex (Compositae). J Essent Oil Res 2:317–326

    Article  CAS  Google Scholar 

  • Halbert SE, Corsini D, Wiebe M, Vaughn SF (2009) Plant-derived compounds and extracts with potential as aphid repellents. Ann Appl Biol 154:303–307

    Article  CAS  Google Scholar 

  • Harb EMZ, Mahmoud MA (2009) Enhancing of growth, essential oil yield and components of yarrow plant (Achillea millefolium) grown under safe agriculture conditions using zeolite and compost. Proceeding 4th Conference on Recent Technologies in Agriculture pp 586-592

  • Haziri AI, Aliaga N, Ismaili M, Govori-Odai S, Leci O, Faiku F, Arapi V, Haziri I (2010) Secondary metabolites in essential oil of Achillea millefolium (L.) growing wild in east part of Kosova. Am J Biochem Biotechnol 6:32–34

    Article  CAS  Google Scholar 

  • Hӧld KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) α-thujone (the active component of absinthe): γ-aminobutyric acid type a receptor modulation and metabolic detoxification. Proc Natl Acad Sci U S A 97:3826–3831

    Article  Google Scholar 

  • Hwang YS, Wu KH, Kumamoto J, Axelrod H, Mulla MS (1985) Isolation and identification of mosquito repellents in Artemisia vulgaris. J Chem Ecol 11:1297–1306

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    Article  CAS  Google Scholar 

  • Isman MB, Machial CM (2006) Pesticides based on plant essential oils: from traditional practice to commercialization. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds. Elsevier, BV, pp 29–44

    Chapter  Google Scholar 

  • Kalita B, Bora S, Sharma AK (2013) Plant essential oils as mosquito repellent-a review. Int J Res Dev Pharm L Sci 3:741–747

    Google Scholar 

  • Karahroodi ZR, Moharramipour S, Rahbarpour A (2009) Investigated repellency effect of some essential oils of 17 native medicinal plants on adults Plodia interpunctella. Am-Eurasian J Sustain Agric 3(2):181–184

    Google Scholar 

  • Khanikor B, Parida P, Yadav RNS, Bora D (2013) Comparative mode of action of some terpene compounds against octopamine receptor and acetyl cholinesterase of mosquito and human system by the help of homology modeling and Docking studies. J App Pharm Sci 3(2):006–012

    Google Scholar 

  • Kiran SR, Devi PS (2007) Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia DC. Parasitol Res 101(2):413–418

    Article  PubMed  Google Scholar 

  • Klein C, Waterhouse DF (2000) Distribution and importance of arthropods associated with agriculture and forestry in Chile. ACIAR, Canberra, p 231

    Google Scholar 

  • Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58(11):1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20(6):1223–1280

    Article  CAS  PubMed  Google Scholar 

  • Licciardello F, Muratore G, Suma P, Russo A, Nerín C (2013) Effectiveness of a novel insect-repellent food packing incorporating essential oils against the red beetle (Tribolium castaneum). Innov Food Sci Emerg Technol 19:173–180

    Article  CAS  Google Scholar 

  • Magiatis P, Skaltsounis AL, Chinov I, Haroutounian SA (2002) Chemical composition and in vitro antimicrobial activity of the essential oils of three Greek Achillea species. Z Naturforsch 57:287–290

    CAS  Google Scholar 

  • Miyazawa M, Watanabe H, Kameoka H (1997) Inhibition of acetylcholinesterase activity by monoterpenoids with a p-menthane skeleton. J Agr Food Chem 45:677–679

    Article  CAS  Google Scholar 

  • Nadim MM, Ahmad MA, Ahmad J, Bakshi SK (2011) The essential oil composition of Achillea millefolium L. cultivated under tropical condition in India. WJAS 7:561–565

    CAS  Google Scholar 

  • Nemeth E (2005) Essential oil composition of species in the genus Achillea. J Essent Oil Res 17:501–512

    Article  CAS  Google Scholar 

  • Nemeth E, Bernath J (2008) Biological activities of yarrow species (Achillea spp.). Curr Pharm Des 14:3151–3167

    Article  CAS  PubMed  Google Scholar 

  • Nenaah GE (2013) Chemical composition, insecticidal and repellence activities of essential oils of three Achillea species against the Khapra beetle (Coleoptera: Dermestidae). J Pest Sci. doi:10.1007/s10340-013-0547-1

    Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2009) Repellent activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). J Stored Prod Res 45:212–214

    Article  CAS  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378

    Article  CAS  PubMed  Google Scholar 

  • Noldus L, Spink A, Tegelenbach R (2002) Computerized video tracking, movement analysis and behaviour recognition in insect. Comput Electron Agric 35:201–227

    Article  Google Scholar 

  • Olivero-Verbel J, Tirado-Ballestas I, Caballero-Gallardo K, Stashenko EE (2013) Essential oils applied to the food act as repellents toward Tribolium castaneum. J Stored Prod Res 55:145–147

    Article  Google Scholar 

  • Orav A, Kailas T, Ivask K (2001) Composition of the essential oil from Achillea millefolium L. from Estonia. J Essent Oil Res 13:290–294

    Article  CAS  Google Scholar 

  • Orav A, Arak E, Raal A (2007) Phytochemical analysis of the essential oil of Achillea millefolium L. from various European Countries. Nat Prod Res 20:1082–1088

    Article  Google Scholar 

  • Parra L, Mutis A, Aguilera A, Rebolledo A, Quiroz A (2009a) Knowledge of the “Cabrito del Frambueso” weevil (CF) Aegorhinus superciliosus (Guérin) (Coleoptera: Curculionidae). IDESIA 27(1):57–65

    Article  Google Scholar 

  • Parra L, Mutis A, Ceballos R, Lizama M, Pardo F, Perich F, Quiroz A (2009b) Volatiles released from Vaccinium corymbosum were attractive to Aegorhinus superciliosus (Coleoptera: Curculionidae) in an olfactometric bioassay. Environ Entomol 38:781–789

    Article  CAS  PubMed  Google Scholar 

  • Perry NB, Anderson RE, Brennan NJ, Douglas MH, Heaney AJ, McGrimpsey JA, Smallfield BM (1999) Essential oil from dalmatian sage (Salvia officinalis L.), variations among individuals, plant parts, seasons and sites. J Agric Food Chem 47:2048–2054

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, Lipner V, Giordano S, Horowitz A, D'Amore M (1992) Environmental and economic costs of pesticide use. BioScience 42:750–760

    Article  Google Scholar 

  • Prabakar K, Jebanesan A (2004) Larvicidal efficacy of some Cucurbitaceous plant leaf extracts against Culex quinquefasciatus (Say). Bioresour Technol 95:113–114

    Article  CAS  PubMed  Google Scholar 

  • Priestley CM, Williamson EM, Wafford KA, Satelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Brit J Pharmacol 140:1363–1372

    Article  CAS  Google Scholar 

  • Ratra GS, Kamita SG, Casida JE (2001) Role of human GABAA receptor β3 subunit in insecticide toxicity. Toxicol Appl Pharm 172:233–240

    Article  CAS  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

  • Rice KC, Wilson RS (1976) (-)-3-isothujone, a small nonnitrogenous molecule with antinociceptive activity in mice. J Med Chem 19:1054–1057

    Article  CAS  PubMed  Google Scholar 

  • Rojht H, Meṧko A, Vidrih M, Trdan S (2009) Insecticidal activity of four different substances against larvae and adults of sycamore lace bug (Corythucha ciliata [Say], Heteroptera, Tingidae). Acta Agric Slov 93:31–36

    CAS  Google Scholar 

  • Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol 14:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • Santoro GF, Cardoso MG, Guimaraes LG, Mendonca LZ, Soares MJ (2007) Trypanosoma cruzi: Activity of essential oils from Achillea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on epimastigotes and trypomastigotes. Exp Parasitol 116:283–290

    Article  CAS  PubMed  Google Scholar 

  • Simic N, Palic R, Vajs V, Milosavljevic S, Djokovic D (2002) Composition and antibacterial activity of Achillea asplenifolia essential oil. J Essent Oil Res 14:76–78

    Article  CAS  Google Scholar 

  • Tapia S, Pardo F, Perich F, Quiroz A (2005) Clover root borer Hylastinus obscurus (Marsham) (Coleoptera: Scolytidae) has no preference for volatiles from root extracts of disease infected red clover. Acta Agric Scand B 55:158–160

    Google Scholar 

  • Tapia T, Perich F, Pardo F, Palma G, Quiroz A (2007) Identification of volatiles from differently aged red clover (Trifolium pratense) root extracts and behavioural responses of clover root borer (Hylastinus obscurus) (Marsham) (Coleoptera: Scolytidae) to them. Biochem Syst Ecol 35:61–67

    Article  CAS  Google Scholar 

  • Tozlu E, Cakir A, Kordali S, Tozlu G, Ozer H, Akcine TA (2011) Chemical compositions and insecticidal effects of essential oils isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum against broadbean weevil (Bruchus dentipes). Sci Hortic 130:9–17

    Article  CAS  Google Scholar 

  • Zavala A, Elgueta M, Abarzúa J, Aguilera A, Quiroz A, Rebolledo R (2011) Diversity and distribution of the Aegorhinus genus in La Araucanía Región of Chile, with special reference to A. superciliosus and A. nodipennis. Cien Inv Agr 38:367–377

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Doctoral thesis no 24121197, Doctoral thesis in Industry no 781211007, and FONDECYT 11130715.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Quiroz.

Additional information

Edited by Raul N Guedes — UFV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tampe, J., Parra, L., Huaiquil, K. et al. Repellent Effect and Metabolite Volatile Profile of the Essential Oil of Achillea millefolium Against Aegorhinus nodipennis (Hope) (Coleoptera: Curculionidae). Neotrop Entomol 44, 279–285 (2015). https://doi.org/10.1007/s13744-015-0278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-015-0278-5

Keywords

Navigation