Skip to main content
Log in

Population Dynamics and Temperature-Dependent Development of Chrysomphalus aonidum (L.) to Aid Sustainable Pest Management Decisions

  • Pest Management
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The increasing worldwide trades progressively led to decreased impact of natural barriers on wild species movement. The exotic scale Chrysomphalus aonidum (L.) (Hemiptera: Diaspididae), recently reported on citrus in southern Italy, may represent a new threat to Mediterranean citriculture. We studied C. aonidum population dynamics under field conditions and documented its development under various temperatures. To enable describing temperature-dependent development through the use of linear and non-linear models, low temperature thresholds and thermal constants for each developmental stage were estimated. Chrysomphalus aonidum was able to perform four generations on green parts (leaves, sprouts) of citrus trees and three on fruits. In addition, an overall higher population density was observed on samples collected in the southern part of the tree canopy. Temperature had a significant effect on the developmental rate; female needed 625 degree days (DD) to complete its development, while male needed 833 DD. The low threshold temperatures, together with data from population dynamics, demonstrated that C. aonidum is able to overwinter as second instar and as an adult. The results obtained, validated by those collected in the field, revealed few differences between predicted and observed dates of first occurrence of each C. aonidum instar in citrus orchards. Data on C. aonidum phenology and the definition of the thermal parameters (lower and upper threshold temperatures, optimum temperature, and the thermal constant) by non-linear models could allow the estimation of the occurrence in the field of each life stage and would be helpful in developing effective integrated control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Alexandrakis V, Michelakis S (1980) Distribution d’Aonidiella aurantii (Mask.) (Hom. Diaspididae) en fonction de son emplacement sur l’arbre et de la variété d’agrumes en Crète. Fruits 35:639–644

    Google Scholar 

  • Allen JC (1976) A modified sine wave method for calculating degree days. Environ Entomol 5:388–396

    Google Scholar 

  • Andrade LL, Busoli AC, Barbosa JC (2008) Temperature in the development and reproduction of scales reared on squash. Cienc Rural 38(9):2419–2426

    Article  Google Scholar 

  • Beardsley JW, Gonzalez RH (1975) The biology and ecology of armored scales. Annu Rev Entomol 20:47–73

    Article  PubMed  Google Scholar 

  • Ben-Dov Y, Miller DR, Gibson GAP (2001) ScaleNet, Chrysomphalus aonidum. http://www.sel.barc.usda.gov/catalogs/diaspidi/Chrysomphalusaonidum.htm#Chrysomphalusaonidum Accessed 25 May 2013

  • Borras M, Soto A, Garcia Marí F (2006) Evolución estacional de Chrysomphalus aonidum (L.) (Hemiptera: Diaspididae) y prospección en Valencia. Boletín de Sanidad Vegetal. Plagas 32:313–314

    Google Scholar 

  • Briere JF, Pracros P, Le Roux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29

    Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Markauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

    Article  Google Scholar 

  • Campolo O, Malacrinò A, Maione V, Laudani F, Chiera E, Palmeri V (2013) Population dynamics and spread of Unaspis yanonensis in Calabria, Italy. Phytoparasitica 41:151–157

    Article  Google Scholar 

  • Cohen E, Podoler H, El-Hamlauwi M (1988) Effect of malathion-bait mixture on two parasitoids of the Florida red scale, Chrysomphalus aonidum (L.). Crop Prot 7:91–95

    Article  Google Scholar 

  • Ewing B, Yandell BS, Barbieri JF, Luck RF, Forster LD (2002) Event-driven competing risks. Ecol Model 158:35–50

    Article  Google Scholar 

  • Frank SD (2012) Reduced risk insecticides to control scale insects and protect natural enemies in the production and maintenance of urban landscape plants. Environ Entomol 41:377–386

    Article  PubMed  CAS  Google Scholar 

  • Garcia Mari F, Soto A, Hernandez Penadès P, Rodrigo E, Rodriguez Reina JM (2000) Una nueva cochinilla aparece en los cítricos valencianos, Chrysomphalus aonidum. Phytoma España 117:35–40

    Google Scholar 

  • Gerson U (1977) La caspilla Parlatoria pergandei Comstock y sus enemigos naturales en Israel. Bol Serv Defens Cont Plag Inspect Fito 83:21–53

    Google Scholar 

  • Gerson U (2012) Diaspididae. In: Vacante V, Gerson U (Eds.) Integrated control of citrus pests in the Mediterranean region, pp. 192–205

  • Grout TG, DuToit WJ, Hofmeyr JH, Richards GI (1989) California red scale (Homoptera: Diaspididae) phenology on citrus in South Africa. J Econ Entomol 82:793–798

    Google Scholar 

  • Hlavjenková I, Šefrová H (2012) Chrysomphalus aonidum (Linnaeus, 1758), a new alien pest of ornamental plants in the Czech Republic (Hemiptera: Coccoidea: Diaspididae). Acta Univ Agric Silvic Mendelianae Brun 60:69–77

    Article  Google Scholar 

  • Inserra S (1969) La cocciniglia rossa forte degli agrumi (Aonidiella aurantii Maskell) in Sicilia. Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri 27:1–26

    Google Scholar 

  • Jacas J, Karamaouna F, Vercher R, Zappalà L (2010) Citrus pest management in the Northern Mediterranean basin (Spain, Italy and Greece). In: Ciancio A, Mukerji KG (eds) Integrated management of arthropod pests and insect borne diseases. Springer, Dordrecht, pp 3–26

    Chapter  Google Scholar 

  • Jalali MA, Tirry L, Arbab A, De Clercq P (2010) Temperature-dependent development of the two-spotted ladybeetle, Adalia bipunctata, on the green peach aphid, Myzus persicae, and a factitious food under constant temperatures. J Insect Sci 10

  • Kim SB, Kim DS (2013) Temperature-dependent fecundity of overwintered Unaspis yanonensis (Hemiptera: Diaspididae) and use of degree-days for the prediction of first crawler. Crop Prot 43:60–64

    Article  Google Scholar 

  • Kocmánková E, Trnka M, Eitzinger J, Formayer H, Dubrovský M, Semerádová D, Žalud Z, Juroch J, Možný M (2010) Estimating the impact of climate change on the occurrence of selected pests in the Central European region. Clim Res 44:95–105

    Article  Google Scholar 

  • Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of Nephus includes (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of linear and various nonlinear models using specific criteria. Environ Entomol 33(1):1–11

    Article  Google Scholar 

  • Korenaga R, Sakagami Y, Okudai S (1976) The effect of temperature on the development of the arrowhead scale, Unaspis yanonensis Kuwana. II. Development of the first generation under fluctuating temperature. Bull Fruit Tree Res Sta B 3:47–5

    Google Scholar 

  • Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75

    Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  PubMed  CAS  Google Scholar 

  • Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytical model for description of temperature dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140

    Google Scholar 

  • Longo S, Mazzeo G, Russo A (1994) Le cocciniglie delle piante ornamentali in Italia meridionale. Informatore Fitopatologico 44:15–28

    Google Scholar 

  • Longo S, Marotta S, Pellizzari G, Russo A, Tranfaglia A (1995) An annotated list of the scale insects (Homoptera: Coccoidea) of Italy. Isr J Entomol 29:113–130

    Google Scholar 

  • Ortu S, Cocco A (2004) Distribuzione spaziale di Aonidiella aurantii (Maskell) su piante di arancio. Informatore Fitopatologico 11:54–58

    Google Scholar 

  • Palmeri V, Campolo O, Algeri GM, Grande SB, Chiera E, Maione V (2011) Observations on the biology of Chrysomphalus aonidum (L) (Hemiptera: Diaspididae) in southern Italy and its natural enemies. Proceedings of the meeting at Agadir (Morocco), 01–03 March, 2010. Working Group “Integrated Control in Citrus Fruit Crops”. IOBC/WPRS Bull 62:143–146

    Google Scholar 

  • Pellizzari G, Germain JF (2010) Scales (Hemiptera, Superfamily Coccoidea). In: Roques A (ed) Alien terrestrial arthropods of Europe. BioRisk 4: 475–510

  • Pellizzari G, Vacante V (2007) Una nuova cocciniglia sugli agrumi in Italia: il Chrysomphalus aonidum (Linnaeus) (Hemiptera: Diaspididae). Informatore Fitopatologico 57:45–47

    Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect pests. Agric For Meteorol 57:221–240

    Article  Google Scholar 

  • Prasad YG, Prabhakar M, Sreedevi G, Ramachandra Rao G, Venkateswarlu B (2012) Effect of temperature on development, survival and reproduction of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Crop Prot 39:81–88

    Article  Google Scholar 

  • Quayle HJ (1941) Insects of citrus and other subtropical fruits. Comstock Publishing Company Inc., Ithaca, New York

    Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 20 January 2012

  • Régnière J, Powell J, Bents B, Nealis V (2012) Effects of temperatures on development, survival and reproduction of insects: experimental design, data analysis and modeling. J Insect Physiol 58:634–647

    Article  PubMed  Google Scholar 

  • Rehman SU, Browning HW, Nigg HN, Harrison JM (2000) Increases in Florida red scale populations through pesticidal elimination of Aphytis holoxanthus Debach in Florida citrus. Biol Control 18:87–93

    Article  CAS  Google Scholar 

  • Rodrigo E, Garcia Mari F (1990) Comparación del ciclo biológico de los diaspinos Parlatoria pergandii, Aonidiella aurantii y Lepidosaphes beckii (Homoptera, Diaspididae) en cítricos. Boletín de sanidad vegetal Plagas 16:25–35

    Google Scholar 

  • Rodrigo E, Garcia Marí F (1994) Estudio de la abundancia y distribucion de algunos coccidos diaspididos de citricos. Bol San Veg Plagas 20:151–164

    Google Scholar 

  • Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ Entomol 31(1):177–187

    Article  Google Scholar 

  • Schweig C, Grunberg A (1936) The problem of black scale (Chrysomphalus ficus Ashm.) in Palestine. Bull Entomol Res 27:677–713

    Google Scholar 

  • Suma P, Zappalà L, Mazzeo G, Siscaro G (2009) Lethal and sub-lethal effects of insecticides on natural enemies of citrus scale pests. BioControl 54:651–661

    Article  CAS  Google Scholar 

  • Taylor F (1981) Ecology and evolution of physiological time in insects. Am Nat 117:1–23

    Article  Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306

    Article  Google Scholar 

  • Walker GP, Richards CB, Jones WG, Aitken DCG (1991) Toxicity of five insecticides used to control California red scale (Homoptera: Diaspididae) against susceptible red scale strains. J Econ Entomol 84:17–24

    CAS  Google Scholar 

  • Watson GW (2005) Arthropods of economic importance Diaspididae of the World. World Biodiversity Database 2005. http://nlbif.eti.uva.nl/bis/diaspididae.php?selected=beschrijving&menuentry=soorten&id=102 Accessed 12 September 2012

  • Yu DS, Luck RF (1988) Temperature-dependent size and development of California red scale (Homoptera: Diaspididae) and its effect on host availability for the ectoparasitoid, Aphytis melinus DeBach (Hymenoptera: Aphelinidae). Environ Entomol 17:154–161

    Google Scholar 

  • Zappalà L, Campolo O, Saraceno F, Grande SB, Raciti E, Siscaro G, Palmeri V (2008) Augmentative releases of Aphytis melinus (Hymenoptera: Aphelinidae) to control Aonidiella aurantii (Hemiptera: Diaspididae) in Sicilian citrus groves. IOBC/WPRS Bull 38:49–54

    Google Scholar 

  • Zappalà L, Campolo O, Grande SB, Saraceno F, Biondi A, Siscaro G, Palmeri V (2012) Dispersal of Aphytis melinus (Hymenoptera: Aphelinidae) after augmentative releases in citrus orchards. Eur J Entomol 109:561–568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Palmeri.

Additional information

Edited by Wesley AC Godoy – ESALQ/USP

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 136 kb)

ESM 2

(DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campolo, O., Malacrinò, A., Laudani, F. et al. Population Dynamics and Temperature-Dependent Development of Chrysomphalus aonidum (L.) to Aid Sustainable Pest Management Decisions. Neotrop Entomol 43, 453–464 (2014). https://doi.org/10.1007/s13744-014-0226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-014-0226-9

Keywords

Navigation