Skip to main content
Log in

Exploring crystal structure, Hirshfeld surface and quantum mechanical attributes of symmetric thiophene Schiff base

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A novel compound (1E,1′E)-N,N′-(ethane-1,2-diyl)bis(1-(5-nitrothiophen-2-yl)methanimine) [EDNM] was synthesized from thiophene derivative in view to get multidentate ligand with potential biological activity. EDNM is characterized by FT-IR, 1H and 13C NMR and UV–Vis spectroscopic techniques and confirmed by SCXRD. EDNM crystallizes in the monoclinic system with P21/c space group with Z value 4 and unit cell parameters a = 5.6540(3) Å, b = 17.9249(8) Å and c = 7.5077(5) Å. DFT was employed for theoretical evaluations using B3LYP with the basis set 6–311 +  + G (d,p). Geometry optimization, vibrational analysis, NMR, electronic absorption, MEP, FMO, Mulliken charges and NBO analysis were performed, thereby establishing the nature of reactive sites, band energy gap and atomic charges of EDNM. Theoretical values matched well with the experimental findings. NBO analysis revealed the donor acceptor interactions in molecule. Analysis of global reactivity descriptors along with Fukui indices outlines the elaborate scheme of reactive sites of the molecule, and Hirshfeld surface investigation revealed the intermolecular interactions in crystal packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. P. Nitschke, B. Jarzabek, A. Bejan, M. Damaceanu, Effect of protonation on optical and electrochemical properties of thiophene−phenylene-based schiff bases with alkoxy side groups. J. Phys. Chem. B 125, 8588–8600 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. Hadi, F. Mehdi, B. Reza, T. Vajiheh, S.M. Khurram, A. Muhamma, N.T. Muhammad, Sonication-assisted synthesis of new Schiff bases derived from 3-ethoxysalicylaldehyde: crystal structure determination, Hirshfeld surface analysis, theoretical calculations and spectroscopic studies. J. Mol. Str. 1243(5), 130782 (2021)

    Google Scholar 

  3. J. Arezoo, S. Mehdi, M. Valiollah, M. Majid, M. Iraj, T. Shahram, A.R. Hadi, K. Hadi, K. Reza, G. Sajjad, Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: influence of substitutions on DNA-binding. J. Mol. Liq. 253, 61–71 (2018). https://doi.org/10.1016/j.molliq.2018.01.029

    Article  CAS  Google Scholar 

  4. K. Hadi, B. Reza, F. Mehdi, T. Vajiheh, S.M. Khurram, A. Muhammad, N.T. Muhammad, Ultrasound-based synthesis, SC-XRD, NMR, DFT, HSA of new Schiff bases derived from 2-aminopyridine: experimental and theoretical studies. J. Mol. Struct. 1233(5), 130105 (2021)

    Google Scholar 

  5. A.A. Amir, K. Hadi, F. Nourollah, N.T. Muhammed, Synthesis, characterization, crystal structures and antibacterial activities of some Schiff bases with N2O2 donor sets. J. Iran. Chem. Soc. 15, 1495–1504 (2018). https://doi.org/10.1007/s13738-018-1347-6.2

    Article  Google Scholar 

  6. A.A. Amera, H. Iliktia, C. Beyens, J. Lyskawa, U. Maschkec, Elaboration of new modified electrodes (MEs) by electropolymerization of Cu(II)-Schiff base complexes bearing pyrrole moieties: application in electroreduction of acetophenone and carbon dioxide. Eur. Polymer J. 112, 569–580 (2019)

    Article  Google Scholar 

  7. O.A. Abu Ali, N. Elangovan, S.F. Mahmoud, M.S. El-Gendey, H.Z.E. Elbasheer, S.M. El-Bahy, R. Thomas, Synthesis, characterization, vibrational analysis and computational studies of a new Schiff base from pentafluoro benzaldehyde and sulfanilamide. J. Mol. Struct. 1265(5), 133445 (2022)

    Article  Google Scholar 

  8. E. Ermiş, Synthesis, spectroscopic characterization and DFT calculations of novel Schiff base containing thiophene ring. J. Mol. Struct. 1156, 91–104 (2018)

    Article  Google Scholar 

  9. D. Ghosh, S.T. Choudhury, S. Ghosh, A.K. Mandal, S. Sarkar, A. Ghosh, K.D. Saha, N. Das, Nanocapsulated curcumin: oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chem. Biol. Interact. 195, 206 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. D. Seifzadeh, H. Basharnavaz, A. Bezaatpour, A Schiff base compound as effective corrosion inhibitor for magnesium in acidic media. Mater. Chem. Phys. 138(2–3), 794–802 (2013)

    Article  CAS  Google Scholar 

  11. M.S. Meenukutty, A.P. Mohan, V.G. Vidya, V.G. Viju Kumar, Synthesis, characterization, DFT analysis and docking studies OFA novel schiff base using 5-bromo salicylaldehyde and β-alanine. Heliyon (2022). https://doi.org/10.1016/j.heliyon.2022.e09600

    Article  PubMed  PubMed Central  Google Scholar 

  12. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, NY, USA, 1989)

    Google Scholar 

  13. P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J.D.J. Grimwood, M.A. Spackman, Crystal explorer: a program for Hirshfeld surface analysis, vissualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 54(3), 1006–1011 (2021). https://doi.org/10.1107/S1600576721002910

    Article  CAS  Google Scholar 

  14. V.G. Viju Kumar, V.G. Vidya, Crystal architecture, DFT and Hirshfeld surface analysis of novel ‘double open-end spanner’ type dimer derived from 4-aminoantipyrine. J. Mol. Struct. 1270, 133882 (2022). https://doi.org/10.1016/j.molstruc.2022.133882

    Article  CAS  Google Scholar 

  15. G.M. Sheldrick, Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A. 46, 467–473 (1990)

    Article  Google Scholar 

  16. G.M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. 71, 3–8 (2015)

    Google Scholar 

  17. A.L. Spek, PLATON, An integrated tool for the analysis of the results of a single crystal structure determination. Acta Cryst. A. 46, 34 (1990)

    Google Scholar 

  18. C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L.M. Rodriguez, R. Taylor, J. van de Streek, P.A. Wood, Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J Appl. Cryst. 41, 466–470 (2008)

    Article  CAS  Google Scholar 

  19. A. Zülfikaroğlu, Ç. Yüksektepe, H. Bati, N. Çalışkan, O. Büyükgüngör, Crystal structure and properties of (Z)-N′-((E)-2-(hydroxyimino)-1-phenylethylidene) isonicotinohydrazide. J. Struct. Chem. 50(6), 1166–1170 (2009)

    Article  Google Scholar 

  20. S. Demir, M. Dincer, E. Şahan, E. Korkusuz, İ Yıldırım, Vibrational Spectroscopic Studies, HOMO–LUMO and MEP Analysis of 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole with use X-ray diffractions and DFT calculations. J. Mol. Struct. 985, 251–260 (2011)

    Article  CAS  Google Scholar 

  21. N. Özdemir, R. Kağıt, O. Dayan, Investigation of enol-imine/keto-amine tautomerism in (E)-4-[(2-hydroxybenzylidene)amino]phenyl benzenesulphonate by experimental and molecular modelling methods. Mol. Phys. 114(6), 757–768 (2016). https://doi.org/10.1080/00268976.2015.1116715

    Article  CAS  Google Scholar 

  22. S. Demir, M. Dinçer, A. Çukurovali, I. Yılmaz, N-[4-(3-Methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-N’-pyridin-2-ylmethylene-chloro-acetic acid hydrazide: synthesis and configurational assignment based on X-ray, 1 H, and 13 C NMR and theoretical calculations 1. Crystallogr. Rep. 62(6), 868–880 (2017)

    Article  CAS  Google Scholar 

  23. M.M.Y. Kuddushi, M.A.H. Malek, V.L. Patidar, M.S. Patel, R.K. Patel, R.H. Dave, Synthesis and characterization of Schiff base aniline wıth 5-bromo-2- hydroxyl benzaldehyde and their metal complexes. Int. J. Recent Sci. Res. 4(1), 26026–26030 (2018)

    Google Scholar 

  24. K. Feyza, D. Erdener, İ Kaya, A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: synthesis, characterization and fluorescent applications. Inorg. Chim. Acta 509, 119676 (2020)

    Article  Google Scholar 

  25. S. Kansız, M. Azam, T. Basılı, S. Meral, F.A. Aktaş, S. Yeşilbağ, K. Min, A.A. Ağar, N. Dege, Synthesis, structural studies, Hirshfeld surface analysis, and molecular docking studies of a thiophene-based Schiff base compound. J. Mol. Struct. 1265, 133477 (2022)

    Article  Google Scholar 

  26. H.V. Huynh, Y. Han, R. Jothibasu, J.A. Yang, 13C NMR spectroscopic determination of ligand donor strengths using N-heterocyclic carbene complexes of palladium(II). Organometallics 28, 5395–5404 (2009)

    Article  CAS  Google Scholar 

  27. I. Warad, O. Ali, A.A. Ali, N.A. Jaradat, F. Hussein, L. Abdallah, N. Al-Zaqri, A. Alsalme, F.A. Alharthi, Synthesis and spectral identification of three Schiff bases with a 2-(Piperazin-1-yl)-N-(thiophen-2-yl methylene)ethanamine moiety acting as novel pancreatic lipase Inhibitors: thermal DFT, antioxidant, antibacterial, and molecular docking investigations. Molecules 25, 2253 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K.S.M. Salih, Synthesis, characterization, surface analysis, optical activity and solvent effects on the electronic absorptions of Schiff base-functionalized amino thiophene derivatives: experimental and TD-DFT investigations. J. Mol. Struct. 1244, 131267 (2021)

    Article  CAS  Google Scholar 

  29. K. Hadi, F. Mehdi, B. Reza, B. Mehrnaz, M. Majid, A. Muhammad, S.M. Khurram, N.T. Muhammad, Pd(II) and Ni(II) complexes containing ONNO tetradentate Schiff base ligand: synthesis, crystal structure, spectral characterization, theoretical studies, and use of PdL as an efficient homogeneous catalyst for Suzuki–Miyaura cross-coupling reaction. Polyhedron 213, 115622 (2022). https://doi.org/10.1016/j.poly.2021.115622

    Article  CAS  Google Scholar 

  30. L. Guo, S. Wu, F. Zeng, J. Zhao, Synthesis and fluorescence property of terbium complex with novel Schiff-base macromolecular ligand. Eur. Polym. J. 42(7), 1670–1675 (2006)

    Article  CAS  Google Scholar 

  31. S. Tarchouna, I. Chaabane, A.B. Rahaiem, FTIR and Raman spectra and vibrational investigation of bis(4-acetylanilinium) hexachlorostannate using DFT (B3LYP) calculation. Phys. E Low-Dimens. Syst. Nanostruct. 83, 186–194 (2016)

    Article  CAS  Google Scholar 

  32. K. Buldurun, Synthesis, characterization, thermal study and optical property evaluation of Co(II), Pd(II) complexes containing schiff bases of thiophene-3-carboxylate Ligand. J. Electron. Mater. 49, 3 (2020)

    Article  Google Scholar 

  33. V.H. Abhijith, V.G. Vidya, V.G. Viju Kumar, DFT computations, spectral investigations and Antimicrobial studies of Zn (II) complex with α-diketimine ligand. Results Chem. 8(6), 100420 (2022). https://doi.org/10.1016/j.rechem.2022.100420

    Article  CAS  Google Scholar 

  34. K. Hadi, F. Mehdi, B. Reza, A.R. Hadi, A.A. Amir, S. Samaneh, S.M. Khurram, A. Muhammad, N.T. Muhammad, Binuclear Zn(II) Schiff base complexes: synthesis, spectral characterization, theoretical studies and antimicrobial investigations. Inorg. Chim. Acta 530, 120677 (2022). https://doi.org/10.1016/j.ica.2021.120677

    Article  CAS  Google Scholar 

  35. R.G. Parr, W. Yang, Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106, 4049–4050 (1984)

    Article  CAS  Google Scholar 

  36. K. Hadi, F. Mehdi, B. Reza, S.M. Khurram, A. Muhammad, N.T. Muhammad, Synthesis, spectral characterization, SC-XRD, HSA, DFT and catalytic activity of novel dioxovanadium(V) complex with aminobenzohydrazone Schiff base ligand: an experimental and theoretical approach. Inorg. Chim. Acta 526, 120535 (2021). https://doi.org/10.1016/j.ica.2021.120535

    Article  CAS  Google Scholar 

  37. K. Hadi, F. Mehdi, B. Reza, B. Mehrnaz, M. Majid, A. Muhammad, S.M. Khurram, N.T. Muhammad, Spectroscopic investigation, molecular structure, catalytic activity with computational studies of a novel Pd(II) complex incorporating unsymmetrical tetradentate Schiff base ligand. Inorg. Chem. Commun. 142, 109697 (2022). https://doi.org/10.1016/j.inoche.2022.109697

    Article  CAS  Google Scholar 

  38. K. Hadi, N. Maryam, F. Mehdi, B. Reza, S.M. Khurram, A. Saqib, A. Muhammad, N.T. Muhammad, Synthesis, spectral characterization, crystal structure and catalytic activity of a novel dioxomolybdenum Schiff base complex containing 4-aminobenzhydrazone ligand: a combined experimental and theoretical study. J. Mol. Struct. 1249(5), 131645 (2022). https://doi.org/10.1016/j.molstruc.2021.131645

    Article  CAS  Google Scholar 

  39. K. Hadi, F. Mehdi, B. Reza, A.R. Hadi, A.A. Amir, S. Samaneh, S.M. Khurram, A. Muhammad, N.T. Muhammad, Synthesis, spectral characterization, crystal structures, biological activities, theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn(II) Schiff base complexes. Polyhedron 213, 115636 (2022). https://doi.org/10.1016/j.poly.2021.115636

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Viju Kumar.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 128 KB)

Supplementary file2 (PDF 75 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meral, S., Agar, A.A., Cinar, E.B. et al. Exploring crystal structure, Hirshfeld surface and quantum mechanical attributes of symmetric thiophene Schiff base. J IRAN CHEM SOC 20, 3087–3102 (2023). https://doi.org/10.1007/s13738-023-02900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02900-z

Keywords

Navigation