Skip to main content
Log in

The correlation between ROS generation and LPO process as the function of methylparaben concentrations during hemoglobin fructation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, we focused on the interference of methylparaben (MP), as the most commonly used paraben, on hemoglobin (Hb) fructation, generating reactive oxygen species (ROS) and resulting lipid peroxidation (LPO). We showed the enhancement of ROS generation and heme degradation during hemoglobin fructation in the presence of MP using some biophysical techniques such as chemiluminescence and fluorescence spectroscopies, respectively. Lipid peroxidation was observed using thiobarbituric acid reactive substances (TBARS) assay, which correlated with ROS production. Also, the results showed that by increasing the levels of fructation, especially in diabetic-like groups, ROS production was increased augmenting the intensity of LPO. This was accompanied by the elevation of malondialdehyde (MDA) production. Thus, MP has an adverse impact on hemoglobin by enhancing advance glycation end products (AGEs) and ROS generation upon its fructation, which results in MDA generation through enhanced LPO. This kind of research emphasises the importance of preservatives’ application revision especially methylparaben in various industries and the necessity of special attention to the consumption of these products by diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Golden, J. Gandy, G. Vollmer, A review of the endocrine activity of parabens and implications for potential risks to human health. Crit. Rev. Toxicol. 35(5), 435–458 (2005)

    Article  CAS  Google Scholar 

  2. S. Pan, Y. Chaoshen, T. Abderrahmane, R.A. Ruthann, J.M. Ackerman, P. Yaswen, C.D. Vulpe, D.C. Leitman, Parabens and human epidermal growth factor receptor ligand cross-talk in breast cancer cells. Environ. Health Perspect. 124(5), 563–569 (2015)

    Article  Google Scholar 

  3. J.R. Costa, M.S. Campos, R.F. Lima, L.S. Gomes, M.R. Marques, S.R. Taboga, M.F. Biancardi, P.V.A. Brito, F.C.A. Santos, Endocrine-disrupting effects of methylparaben on the adult gerbil prostate. Environ. Toxicol. 32(6), 1801–1812 (2017)

    Article  CAS  Google Scholar 

  4. L. Sun, T. Yu, J. Guo, Z. Zhang, Y. Hu, X. Xiao, L. Sai, The estrogenicity of methylparaben and ethylparaben at doses close to the acceptable daily intake in immature Sprague–Dawley rats. Sci. Rep. 6, 25173 (2016)

    Article  CAS  Google Scholar 

  5. V.Y. Dambal, K.P. Selvan, C. Lite, S. Barathi, W. Santosh, Developmental toxicity and induction of vitellogenin in embryo-larval stages of zebrafish (Danio rerio) exposed to methyl Paraben. Ecotoxicol. Environ. Saf. 141, 113–118 (2017)

    Article  CAS  Google Scholar 

  6. N. Majewska, I. Zaręba, A. Surażyński, A. Galicka, Methylparaben-induced decrease in collagen production and viability of cultured human dermal fibroblasts. J. Appl. Toxicol. 37(9), 1117–1124 (2017)

    Article  CAS  Google Scholar 

  7. K.M. Naik, S.T. Nandibewoor, Investigation into the interaction of methylparaben and erythromycin with human serum albumin using multi-spectroscopic methods. Luminescence 31(2), 433–441 (2016)

    Article  CAS  Google Scholar 

  8. X. Ye, A.M. Bishop, L.L. Needham, A.M. Calafat, Automated on-line column-switching HPLC-MS/MS method with peak focusing for measuring parabens, triclosan, and other environmental phenols in human milk. Anal. Chim. Acta 622(1–2), 150–156 (2008)

    Article  CAS  Google Scholar 

  9. M. Goodarzi, A.A. Moosavi-Movahedi, M. Habibi-Rezaei, M. Shourian, H. Ghourchian, F. Ahmad, N. Sheibani, Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130, 561–567 (2014)

    Article  CAS  Google Scholar 

  10. S. Kikuchi, K. Shinpo, M. Takeuchi, S. Yamagishi, Z. Makita, N. Sasaki, K. Tashiro, Glycation—a sweet tempter for neuronal death. Brain Res. Rev. 41(2–3), 306–323 (2003)

    Article  CAS  Google Scholar 

  11. M. Bohlooli, A.A. Saboury, F. Taghavi, M. Habibi-Rezaei, S. Sarvari, A.A. Moosavi-Movahedi, Fasting at a glance: fasting reduces the binding between sugar and protein; new insights into diabetic complications. Biomacromol. J. 2(2), 93–96 (2016)

    Google Scholar 

  12. S.P. Wolff, Z.Y. Jiang, J.V. Hunt, Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med. 10(5), 339–352 (1991)

    Article  CAS  Google Scholar 

  13. C.J. Mullarkey, D. Edelstein, M. Brownlee, Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem. Biophys. Res. Commun. 173(3), 932–939 (1990)

    Article  CAS  Google Scholar 

  14. N. Sattarahmady, A.A. Moosavi-Movahedi, M. Habibi-Rezaei, S. Ahmadian, A.A. Saboury, H. Heli, N. Sheibani, Detergency effects of nanofibrillar amyloid formation on glycation of human serum albumin. Carbohydr. Res. 343(13), 2229–2234 (2008)

    Article  CAS  Google Scholar 

  15. H.M. Semchyshyn, J. Miedzobrodzki, M.M. Bayliak, L.M. Lozinska, B.V. Homza, Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes. Carbohydr. Res. 384, 61–69 (2014)

    Article  CAS  Google Scholar 

  16. R. Ghosh Moulick, J. Bhattacharya, S. Roy, S. Basak, A.K. Dasgupta, Compensatory secondary structure alterations in protein glycation. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1774(2), 233–242 (2007)

    Article  CAS  Google Scholar 

  17. A. Rossi-Fanelli, E. Antonini, A. Caputo, Studies on the relations between molecular and functional properties of hemoglobin. J. Biol. Chem. 236, 391–396 (1961)

    CAS  PubMed  Google Scholar 

  18. M. Bakhti, M. Habibi-Rezaei, A.A. Moosavi-Movahedi, M.R. Khazaei, Consequential alterations in haemoglobin structure upon glycation with fructose: prevention by acetylsalicylic acid. J. Biochem. 141(6), 827–833 (2007)

    Article  CAS  Google Scholar 

  19. J. Šubert, O. Fars, M. Marečková, Stability evaluation of methylparaben and propylparaben in their solution Aqua conservans using HPLC. Sci. Pharm. 75(4), 171–178 (2007)

    Article  Google Scholar 

  20. N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, A. Misra, Autofluorescence characterization of advanced glycation end products of hemoglobin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61(1–2), 163–170 (2005)

    Article  Google Scholar 

  21. M. Habibi Rezaei, M. Bakhti, A.A. Moosavi-Movahedi, S.J. Zargar, H. Ghorchian, Fructation induces hemin degradation in met-hemoglobin. Biomacromol. J. 1(2), 212–219 (2015)

    Google Scholar 

  22. M. Shourian, H. Tavakoli, H. Ghourchian, H.A. Rafiee-Pour, Detection and dosimetry of gamma ray emitted from thallium-201 and technetium-99 m based on chemiluminescence technique. Radiat. Meas. 45(8), 906–910 (2010)

    Article  CAS  Google Scholar 

  23. J. Stocks, T.L. Dormandy, The autoxidation of human red cell lipids induced by hydrogen peroxide. Br. J. Haematol. 20(1), 95–111 (1971)

    Article  CAS  Google Scholar 

  24. T.F. Slater, Overview of methods used for detecting lipid peroxidation. Methods Enzymol. 105, 283–293 (1984)

    Article  CAS  Google Scholar 

  25. R. Dolhofer, O.H. Wieland, In vitro glycosylation of hemoglobins by different sugars and sugar phosphates. FEBS Lett. 85(1), 86–90 (1978)

    Article  CAS  Google Scholar 

  26. C.G. Schalkwijk, C.D. Stehouwer, V.W. van Hinsbergh, Fructose mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes/Metab. Res. Rev. 20(5), 369–382 (2004)

    Article  CAS  Google Scholar 

  27. J.V. Hunt, R.T. Dean, S.P. Wolff, Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem. J. 256(1), 205–212 (1988)

    Article  CAS  Google Scholar 

  28. H. Esterbauer, K.H. Cheeseman, Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186, 407–421 (1990)

    Article  CAS  Google Scholar 

  29. S.K. Jain, Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 264(35), 21340–21345 (1989)

    CAS  PubMed  Google Scholar 

  30. M. Inouye, H. Hashimoto, T. Mio, K. Sumino, Levels of lipid peroxidation product and glycated hemoglobin A1c in the erythrocytes of diabetic patients. Clin. Chim. Acta 276(2), 163–172 (1998)

    Article  CAS  Google Scholar 

  31. E. Nagababu, J.M. Rifkind, Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem. Biophys. Res. Commun. 247(3), 592–596 (1998)

    Article  CAS  Google Scholar 

  32. D. Pugazhendhi, G.S. Pope, P.D. Darbre, Oestrogenic activity of p-hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J. Appl. Toxicol. 25(4), 301–309 (2005)

    Article  CAS  Google Scholar 

  33. P. Hu, H. Overby, E. Heal, S. Wang, J. Chen, C.L. Shen, L. Zhao, Methylparaben and butylparaben alter multipotent mesenchymal stem cell fates towards adipocyte lineage. Toxicol. Appl. Pharmacol. 329, 48–57 (2017)

    Article  CAS  Google Scholar 

  34. M. Fisher, S. MacPherson, J.M. Braun, R. Hauser, M. Walker, M. Feeley, T.E. Arbuckle, Paraben concentrations in maternal urine and breast milk and its association with personal care product use. Environ. Sci. Technol. 51(7), 4009–4017 (2017)

    Article  CAS  Google Scholar 

  35. S. Nooshi-Nedamani, M. Habibi-Rezaei, A. Farzadfard, A.A. Moosavi-Movahedi, Intensification of serum albumin amyloidogenesis by a glycation-peroxidation loop (GPL). Arch. Biochem. Biophys. 668, 54–60 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of University of Tehran, Center for International Scientific Studies and Collaborations (CISSC)-Ministry of Science, Research and Technology, Iran National Science Foundation (INSF), UNESCO Chair on Interdisciplinary Research in Diabetes, and Iran Society of Biophysical Chemistry is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Habibi-Rezaei or A. A. Moosavi-Movahedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishkari, N., Habibi-Rezaei, M., Taghavi, F. et al. The correlation between ROS generation and LPO process as the function of methylparaben concentrations during hemoglobin fructation. J IRAN CHEM SOC 17, 1249–1255 (2020). https://doi.org/10.1007/s13738-020-01852-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01852-y

Keywords

Navigation