Skip to main content

Advertisement

Log in

Molecular engineering and synthesis of symmetric metal-free organic sensitizers with A-π-D-π-A architecture for DSSC applications: the effect of bridge unit

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Herein, we report the design and synthesis of six symmetric metal-free organic sensitizers (llyu1a, llyu1b, llyu1c, llyu2a, llyu2b, and llyu2c) based on fluorene or dimethyl fluorene donors core carrying double acceptors. All these dyes were characterized using UV–Vis, ESI-MS, and 1HNMR. To study the influence of π-bridges on total solar-to-electric conversion efficiency (%η) for DSSCs, three different π-bridges thiophene, furane, or benzene were introduced into the sensitizers. Their device performances were studied and showed a distinctive difference in efficiency with a maximum of PCE of 2.35% (Jsc = 5.63 mA cm − 2, VOC = 0.60 V and FF = 70.00%) for dye llyu1a. Density functional theory (DFT) and time-dependent density functional theory calculations were used to probe the relationship between chemical structure, photophysical, and photoelectrochemical properties. DFT studies showed that the dihedral angle between thiophene and donor is 26.6°, indicating that the dyes bearing thiophene π-bridge possess more efficient photoexcitation compared to dyes bearing benzene π-bridge (36.6° for both llyu2c and llyu1c) and less aggregation than dyes bearing furane π-bridge (0° for llyu1b and llyu2b). This new finding of influence of π-bridges on total solar-to-electric conversion efficiency would open the door for the molecular engineering of better light harvesting and more efficient metal-free organic sensitizers for DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. M. Dadkhah, M. Salavati-Niasari, Mat. Sci. Semicond. Process 20, 41 (2014)

    Article  CAS  Google Scholar 

  3. H. Teymourinia, M. Salavati-Niasari, O. Amiri, M. Farangi, J. Mol. Liq. 251, 267 (2018)

    Article  CAS  Google Scholar 

  4. O. Amiri, M. Salavati-Niasari, N. Mir, F. Beshkar, F. Ansari, Renew. Energy 125, 590 (2018)

    Article  CAS  Google Scholar 

  5. M.S. Morassaei, A. Salehabadi, A. Akbari, S.H. Tavassoli, M. Salavati-Niasari, J. Alloy Compd. 769, 732 (2018)

    Article  CAS  Google Scholar 

  6. N. Mir, M. Salavati-Niasari, F. Davar, Chem. Eng. J. 181–182, 779 (2012)

    Article  CAS  Google Scholar 

  7. N. Mir, M. Salavati-Niasari, Mater. Res. Bull. 48, 1660 (2013)

    Article  CAS  Google Scholar 

  8. M. Noshin Mir, Salavati-Niasari. Sol. Energy 86, 3397 (2012)

    Article  CAS  Google Scholar 

  9. M. Grätzel, Acc. Chem. Res. 42, 1788 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. R. Rattanawan, V. Promarak, T. Sudyoadsuk, S. Namuangrukc, N. Kungwan, S. Yuan, S. Jungsuttiwong, J. Photochem. Photobiol. A Chem. 322, 16 (2016)

    Article  CAS  Google Scholar 

  11. D. Pugliese, A. Lamberti, F. Bella, A. Sacco, S. Bianco, E. Tressoa, Org. Electron. 15, 3715 (2014)

    Article  CAS  Google Scholar 

  12. A. Yella, H.W. Lee, H.N. Tsao, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011)

    Article  CAS  Google Scholar 

  13. B. Nagarajan, S. Kushwaha, R. Elumalai, S. Mandal, K. Ramanujam, D. Raghavachari, J. Mater. Chem. A 5, 10289 (2017)

    Article  CAS  Google Scholar 

  14. S. Chaurasia, J.T. Lin, Chem. Rec. 16, 1311 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. A. Mahmood, Sol. Energy 123, 127 (2016)

    Article  CAS  Google Scholar 

  16. B. Phillip, E.M. Louis, P. Adithya, N.I. Hammer, J.H. Delcamp, Synth. Met. 222, 66 (2015)

    Google Scholar 

  17. W.I. Hung, Y.Y. Liao, T.H. Lee, Y.C. Ting, J.S. Ni, W.S. Kao, J.T. Lin, Chem. Commun. 1, 2152 (2015)

    Article  CAS  Google Scholar 

  18. Y.H. Numata, S. Zhang, X. Yang, L. Han, Chem. Lett. 42, 1328 (2013)

    Article  CAS  Google Scholar 

  19. Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.H. Zhu, J. Am. Chem. Soc. 137, 14055 (2015)

    Article  CAS  Google Scholar 

  20. W. Zhang, Y. Wu, H. Zhu, Q. Chai, J. Liu, H. Li, X. Song, W. Zhu, ACS Appl. Mater. Interfaces 7, 26802 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. S.G. Chen, H.L. Jia, X.H. Ju, X. Fang, L. Wang, H. Meie, Org. Lett. 13, 1610 (2011)

    Article  CAS  Google Scholar 

  22. X. Ren, S. Jiang, M. Cha, G. Zhou, Z.S. Wang, Chem. Mater. 24, 3493 (2012)

    Article  CAS  Google Scholar 

  23. Y.S. Yang, H.D. Kim, J.H. Ryu, K.K. Kim, S.S. Park, K.S. Ahn, J.H. Kim, Synth. Met. 161, 850 (2011)

    Article  CAS  Google Scholar 

  24. Y. Hong, J.Y. Liao, J. Fu, X. Zang, D.B. Kuang, L. Wang, H. Meier, C.Y. Su, Dyes Pigments 94, 481 (2012)

    Article  CAS  Google Scholar 

  25. M. Norberto, C. Bianca, A. Alessandro, Eur. J. Org. Chem. 32, 7069 (2014)

    Google Scholar 

  26. D. El-Sherbiny, H. Cheema, F. El-Essawy, A. Abdel-Megied, A. El-Shafei, Dyes Pigments 115, 81 (2015)

    Article  CAS  Google Scholar 

  27. X.F. Zang, T.L. Zhang, Z.S. Huang, Z. Iqbal, D.B. Kuang, L. Wang, H. Meier, Dyes Pigments 104, 89 (2014)

    Article  CAS  Google Scholar 

  28. Y.P. Hong, Z. Iqbal, X.L. Yin, D. Cao, Tetrahedron 70, 6296 (2014)

    Article  CAS  Google Scholar 

  29. L. Agostina, D. Luisa, A. Giuseppina, Dyes Pigments 130, 79 (2016)

    Article  CAS  Google Scholar 

  30. P. Bomben, K. Theriault, C. Berlinguette, Eur. J. Inorg. Chem. 2011, 1806 (2011)

    Article  CAS  Google Scholar 

  31. J. Bisquert, Phys. Chem. Chem. Phys. 5, 5360 (2003)

    Article  CAS  Google Scholar 

  32. J. Tang, J. Hua, W. Wu, J. Li, Z. Jin, Y. Long, H. Tian, Energy Environ. Sci. 3, 1736 (2010)

    Article  CAS  Google Scholar 

  33. K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, New J. Chem. 27, 783 (2003)

    Article  CAS  Google Scholar 

  34. K. Funabiki, H. Mase, Y. Saito, A. Otsuka, A. Hibino, N. Tanaka, H. Miura, Y. Himori, T. Yoshida, Y. Kubota, M. Matsu, Org. Lett. 14, 1246 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. F. Francisco, B. Juan, G. Germà, G. Boschloo, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 87, 117 (2005)

    Article  CAS  Google Scholar 

  36. H. Cheema, A. Islam, R. Younts, B. Gautam, I. Bedja, R.K. Gupta, L. Han, K. Gundogdu, A. El-Shafei, Phys. Chem. Chem. Phys. 16, 27078 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial supported by the funding of National Natural Science Foundation of China (21406202), Hangzhou Agricultural Scientific Research Project (20160432B25, 20180432B35), Zhejiang Public Welfare Technology Research Program (LGN19C200014), College Students in Zhejiang Province Sciences and Technology Innovation Activities (No. 2017R452002), and China Scholarship Council (File No. 201708330572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luping Lyu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, L., Tang, P., Tong, G. et al. Molecular engineering and synthesis of symmetric metal-free organic sensitizers with A-π-D-π-A architecture for DSSC applications: the effect of bridge unit. J IRAN CHEM SOC 16, 2441–2450 (2019). https://doi.org/10.1007/s13738-019-01713-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01713-3

Keywords

Navigation