Skip to main content
Log in

RPLC determination of acid dissociation constants and quantitative estimation for sulfasalazine

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Acid dissociation constant value (pK a) is key parameter for predicting the extent of the ionization of a drug molecule at different pH. The effect of the mobile phase composition on the acid dissociation constant values was studied by measuring the pK a values at different acetonitrile concentrations, ranging from 25 to 35 % (v/v). pK a values and limiting retention factors of SSZ were calculated chromatographically using equations derived. From calculated pK a values, the aqueous pK a values of SSZ were calculated by various approaches. Moreover, the correlation established between retention factors and the pH of the water-acetonitrile mobile phase was used to determine the optimum separation condition. Optimized condition was also validated with respect to system suitability, linearity, precision, accuracy, limit of detection and limit of quantitation, respectively. A Gemini NX C18 column (250 × 4.6 mm I.D., 5 µm particles) was used for all the determinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.A. Peppercorn, Ann. Intern. Med. 101, 377 (1984)

    Article  CAS  Google Scholar 

  2. A. Avdeef, K.J. Box, J.E.A. Comer, M. Gilges, M. Hadley, C. Hibbert, W. Patterson, K.Y. Tom, J. Pharm. Biomed. Anal. 20, 631 (1999)

    Article  CAS  Google Scholar 

  3. G. Völgyi, R. Ruiz, K. Box, J. Comer, E. Bosch, K. Takács-Novák, Anal. Chim. Acta. 583, 418 (2007)

    Article  CAS  Google Scholar 

  4. M. Meloun, S. Bordovská, T. Syrový, J. Phys. Org. Chem. 20, 690 (2007)

    Article  CAS  Google Scholar 

  5. P. Wiczling, M.J. Markuszewski, R. Kaliszan, Anal. Chem. 76, 3069 (2004)

    Article  CAS  Google Scholar 

  6. H.S. Canbay, E.C. Demiralay, G. Alsancak, S.A. Ozkan, J. Chem. Eng. Data 56, 2071 (2011)

    Article  CAS  Google Scholar 

  7. Y. Ishıhama, M. Nakamura, T. Miwa, T. Kajima, N. Asakawa, J. Pharm. Sci. 91, 933 (2002)

    Article  CAS  Google Scholar 

  8. C. Horvath, W. Melander, I. Molnar, Anal. Chem. 49, 142 (1977)

    Article  CAS  Google Scholar 

  9. N. Sanli, G. Fonrodona, J. Barbosa, G.A. Özkan, J.L. Beltran, Anal. Chim. Acta 537, 53 (2005)

    Article  CAS  Google Scholar 

  10. E.Ç. Demiralay, Z. Üstün, Y.D. Daldal, J. Pharm. Biomed. Anal. 91, 7 (2014)

    Article  CAS  Google Scholar 

  11. J. Barbosa, R. Berges, V. Sanz-Nebot, J. Chromatogr. A 823, 411 (1998)

    Article  CAS  Google Scholar 

  12. B.P. Johnson, M.G. Khaledi, J.G. Dorsey, Anal. Chem. 58, 2354 (1986)

    Article  CAS  Google Scholar 

  13. C. Reichardt, Solvent and solvent effects in organic chemistry (VCH Verlagsgesellschaft, Wenheim, 1998)

    Google Scholar 

  14. M. Roses, E. Bosch, Anal. Chim. Acta. 274, 147 (1993)

    Article  CAS  Google Scholar 

  15. R. Berges, V. Sanz-Nebot, J. Barbosa, J. Chromatogr. A 869, 27 (2000)

    Article  CAS  Google Scholar 

  16. K. Box, C. Bevan, J. Comer, A. Hill, R. Allen, D. Reynolds, Anal. Chem. 75, 883 (2003)

    Article  CAS  Google Scholar 

  17. K. Box, G. Völgyi, R. Ruiz, J. Comer, K. Takács-Novák, E. Bosch, C. Ráfols, M. Rosés, Helv. Chim. Acta 90, 1538 (2007)

    Article  CAS  Google Scholar 

  18. H. Allgayer, J. Sonnenbichler, W. Kruis, G. Paumgartner, Arzneimittelforschung 35, 1457 (1985)

    CAS  Google Scholar 

  19. B. Saini, G. Bansal, Sci. Pharm. 82, 295 (2014)

    Article  CAS  Google Scholar 

  20. M. Shalaeva, J. Kenseth, F. Lombardo, A. Bastin, J. Pharm. Sci. 97, 2395 (2008)

    Article  CAS  Google Scholar 

  21. M. Yasuda, Bull. Chem. Soc. Jpn. 32, 429 (1959)

    Article  CAS  Google Scholar 

  22. T. Shedlovsky, B. Peasce, in Electrolytes (New York, 1962)

  23. M. Rosés, E. Bosch, J. Chromatogr. A 982, 1 (2002)

    Article  Google Scholar 

  24. J.A. Rafael, J.R. Jabor, R. Casagrande, S.R. Georgetti, M.F. Borin, M.J.V. Fonseca, Braz. J. Pharm. Sci. 43, 97 (2007)

    CAS  Google Scholar 

  25. K.L. Egli, J. AOAC 68, 803 (1985)

    CAS  Google Scholar 

  26. K. Heinig, J. Henion, J. Chromatogr, B 732, 445 (1999)

    CAS  Google Scholar 

  27. V.S. Chungi, G.S. Rekhi, L. Shargel, J. Pharm. Sci. 78, 235 (1989)

    Article  CAS  Google Scholar 

  28. W. Hela, M. Brandtner, R. Widek, R. Schuh, Food Chem. 83, 601 (2003)

    Article  CAS  Google Scholar 

  29. R. Ruiz, C. Ráfols, M. Rosés, E. Bosch, J. Pharm. Sci. 92, 1473 (2003)

    Article  CAS  Google Scholar 

  30. NLREG Version 4.0.: P.H. Sherrod (1991), http://www.sandh.com/Sherrod

  31. R. McNally, The United States Pharmacopoeia (2000), 24th revision :Q5 Taunton, MA

Download references

Acknowledgments

This work was supported by BAP (Project 3153-YL-12). The authors greatly acknowledge Dr. Jose Luis Beltran from University of Barcelona for kindly providing the NLREG program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebru Çubuk Demiralay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, H., Üstün, Z. & Çubuk Demiralay, E. RPLC determination of acid dissociation constants and quantitative estimation for sulfasalazine. J IRAN CHEM SOC 13, 103–110 (2016). https://doi.org/10.1007/s13738-015-0717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0717-6

Keywords

Navigation