Skip to main content
Log in

Nanostructured conducting polypyrrole film prepared by chemical vapor deposition on the interdigital electrodes at room temperature under atmospheric condition and its application as gas sensor

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, the electrical conductive polymer is formed by vapor phase polymerization of pyrrole on the copper interdigital electrodes (Cu-IDEs) in the presence of Fe(III) as an oxidant at room temperature under atmospheric condition. Electrical resistance of IDEs covered with polypyrrole (PPy) layer was investigated and the relationship between the normalized electrical resistances (R − R 0/R 0), experimental conditions of vapor-phase coating (amount of oxidant and time coating) and response behavior of sensors to the volatile organic compounds were studied. The results showed that the pattern of response and selectivity of the sensor is affected by vapor phase polymerization conditions. The prepared PPy gas sensors were used at different conditions for detection and measurement of volatile organic compounds in the gas phase. The PPy gas sensors had demonstrated fast response time (<1 s). Morphological study of the PPy coated layer by scanning electron microscope (SEM) showed that the conducting polymer prepared with nanotube shape. One of the sensors showed selective response toward of n-butylamine (PPy7) with the detection limit of 1 µg and linear range of 2–74 µg. The PPy7 gas sensor was used to measure n-butylamine in well water sample. Disperse liquid–liquid microextraction (DLLME) method was used for extraction and pre-concentration of n-butylamine from aqueous solutions. The extraction recovery of the proposed method was founded 93–105 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.S. Lee, J.K. Jung, J.W. Lim, J.S. Huh, D.D. Lee, Sens. Actuators, B 77, 228 (2001)

    Article  CAS  Google Scholar 

  2. S. Pirsa, N. Alizadeh, Sens. Actuators, B 147, 461 (2010)

    Article  CAS  Google Scholar 

  3. E. Stussi, S. Cella, G.S. Giorgio Serra, Mater. Sci. Eng. C 4, 27 (1996)

    Article  Google Scholar 

  4. P.N. Bartlet, S.K. Ling-Chung, Sens. Actuators 20, 287 (1989)

    Article  Google Scholar 

  5. D. Nicolas-Debarnot, F. Poncin-Epaillard, Anal. Chim. Acta 475, 1 (2003)

    Article  CAS  Google Scholar 

  6. C. Elosua, I.R. Matias, C. Bariain, F.J. Arregui, Sensors 6, 1440 (2006)

    Article  CAS  Google Scholar 

  7. R. Moos, N. Izu, F. Rettig, S. Reib, W. Shin, I. Matsubara, Sensors 11, 3439 (2011)

    Article  Google Scholar 

  8. Y. Zhu, J. Shi, Z. Zhang, C. Zhang, X. Zhang, Anal. Chem. 74, 120 (2002)

    Article  CAS  Google Scholar 

  9. P.T. Moseley, A.J. Crocker, J. Crocker, P. Mosley, The Electrical Conductance of SrFeO2.5+x Thin Films, Sensor Materials, Institute of Physics Publishing, Bristol (1997)

  10. J.K. Avlyanov, Y. Min, A.G. MacDiarmid, A.J. Epstein, Synth. Met. 72, 65 (1995)

    Article  CAS  Google Scholar 

  11. L. Torsi, M. Pezzuto, P. Siciliano, R. Rella, L. Sabbatini, L. Valli, P.G. Zambonin, Sens. Actuators, B 48, 362 (1998)

    Article  CAS  Google Scholar 

  12. J.R. Reynolds, A.D. Child, M.B. Gieselman, Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms electrically conductive polymers, ed. by J.I. Kroschwitz, M.H. Grant, Encyclopedia of Chemical Technology, vol. 9, 4th ed. (Wiley, New York, 1994) p. 77

  13. J. Rodriguez, H.-J. Grande, T.F. Otero, Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms polypyrroles: from basic research to technological applications, in Organic Conductive Molecules and Polymers, vol. 2, ed. by H.S. Nalwa (Wiley, New York, 1997), p. 416

    Google Scholar 

  14. M. Aizawa, H. Shinohara, H. Shirakawa, Polym. Prepr. Jpn. 33, 495 (1984)

    Google Scholar 

  15. S. Morita, A.A. Zakhidov, K. Yoshino, Solid State Commun. 82, 249 (1992)

    Article  CAS  Google Scholar 

  16. W.E. Tenhaeff, K.K. Gleason, Adv. Funct. Mater. 18, 979 (2008)

    Article  CAS  Google Scholar 

  17. M. Ogasawara, K. Funahashi, T. Demura, T. Hagiwara, K. Iwata, Synth. Met. 14, 61 (1986)

    Article  CAS  Google Scholar 

  18. S. Wolf, R. N. Tauber, Silicon Processing for the VLSI Era, Vol. CVD Ta2O5/Oxynitride Stacked Gate Insulator with TiN Gate Electrode For Sub-Quarter Micron MOSFET, 1, Lattice Press, Sunset Beach (2001)

  19. H.O. Pierson, Handbook of Chemical Vapor Deposition, 2nd Edition: Principles, Technology and Applications, Noyes Publications, New York, (1999)

  20. Perfluorinated Polymers. Kirk-Othmer Encyclopedia of Chemical Technology [Online]; Chlorine Oxygen Acids and Salts, Chloric Acid and Chlorates, Wiley, Posted Aug. 13, 2004

  21. R. Bakker, V. Verlaan, C.H.M. van der Werf, J.K. Rath, K.K. Gleason, R.E.I. Schropp, Surf. Coat. Technol. 201, 9422 (2007)

    Article  CAS  Google Scholar 

  22. S.G. Im, K.W. Bong, B.S. Kim, S.H. Baxamusa, P.T. Hammond, P.S. Doyle, K.K. Gleason, J. Am. Chem. Soc. 130, 14424 (2008)

    Article  CAS  Google Scholar 

  23. S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, Chem. Soc. Rev. 29, 283 (2000)

    Article  Google Scholar 

  24. J.P. Lock, S.G. Im, K.K. Gleason, Macromolecules 39, 5326 (2006)

    Article  CAS  Google Scholar 

  25. S.G. Im, P.J. Yoo, P.T. Hammond, K.K. Gleason, Adv. Mater. 19, 2863–2867 (2007)

    Article  CAS  Google Scholar 

  26. M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F.S. Ahmadia, S. Berijani, J. Chromatogr. A 1116, 1 (2006)

    Article  CAS  Google Scholar 

  27. L. Fu, X. Liu, J. Hu, X. Zhao, H. Wang, X. Wang, Anal. Chim. Acta 632, 289 (2009)

    Article  CAS  Google Scholar 

  28. S. Pirsa, N. Alizadeh, Talanta 87, 249 (2011)

    Article  CAS  Google Scholar 

  29. H. Ebrahimzadeha, Y. Yaminib, F. Kamarei, Talanta 79, 1472 (2009)

    Article  Google Scholar 

  30. S. Pirsa, N. Alizadeh, I.E.E.E. Sens, J. 11, 3400 (2011)

    CAS  Google Scholar 

  31. X. Yu, Y. Li, K. Kalantar-zadeh, Sens. Actuators, B 136, 1 (2009)

    Article  CAS  Google Scholar 

  32. N.D. Hoa, N. Van Quy, Y. Cho, D. Kim, Sens. Actuators, B 127, 447 (2007)

    Article  CAS  Google Scholar 

  33. H. Yoon, M. Chang, J. Jang, J. Phys. Chem. B 110, 14074 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Tarbiat Modares University Research Council and the Iran National Science Foundation (INSF) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naader Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, N., Ataei, A.A. & Pirsa, S. Nanostructured conducting polypyrrole film prepared by chemical vapor deposition on the interdigital electrodes at room temperature under atmospheric condition and its application as gas sensor. J IRAN CHEM SOC 12, 1585–1594 (2015). https://doi.org/10.1007/s13738-015-0631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0631-y

Keywords

Navigation