Skip to main content
Log in

Synthesis and characterization of a novel thermally stable water dispersible polyurethane and its magnetic nanocomposites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, a novel water dispersible polyurethane (WDPU) was synthesized from the reaction of hydroxyl-terminated polybutadiene (HTPB), 2,2 bis(hydroxymethyl) propionic acid (DMPA), and 1,5-naphthalene diisocyanate (NDI) and its magnetic nanocomposites were prepared by incorporation of modified Fe3O4 by 3-aminopropyltriethoxysilane (Fe3O4@APTS) nanoparticles (0.5, 1.5, and 3 wt%) via in situ polymerization method. Use of NDI as a high melting point diisocyanate by having the rigid naphthalene structure imparts physical strength as well as thermal stability to the resulted polyurethane. The synthesized WDPU based on NDI was characterized by using Fourier transform infrared spectroscopy (FTIR) technique. In addition, the morphology, mechanical, and magnetic features of the prepared polyurethane nanocomposites were investigated by X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), magnetic force microscopy (MFM), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMTA), and vibrating sample magnetometer (VSM) methods, respectively. Data from DLS experiment showed that the average particles size of the WDPU nanocomposites increased by increasing the nanoparticle contents in comparison with bare WDPU. AFM and MFM analyses indicated that the magnetic nanoparticles (MNPs) were well dispersed in the polyurethane matrices via the formation of covalent bonding between the functionalized magnetic nanoparticles and polymer chains. TGA results demonstrated that adding MNPs increased the temperature of the thermal degradation of the polyurethane nanocomposite. VSM analysis showed that the super paramagnetic behavior of the prepared nanocomposites depended on the Fe3O4@APTS nanoparticle content, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Romo-Uribe A, Santiago-Santiago K, Zavala-Padilla G, Reyes-Mayer A, Calixto-Rodriguez M, Arcos-Casarrubias JA, Baghdachi J (2016) Waterborne layered silicate/acrylate nanocomposites by in-situ emulsion polymerization: Thermal and mechanical reinforcement. Prog Org Coat 101:59–70

    Article  CAS  Google Scholar 

  2. Niu Z, Bian F (2012) Synthesis and characterization of multiple cross-linking UV-curable waterborne polyurethane dispersions. Iran Polym J 21:221–228

    Article  CAS  Google Scholar 

  3. Saeed A, Shabir G (2013) Synthesis of thermally stable high gloss water dispersible polyurethane/polyacrylate resins. Prog Org Coat 76:1135–1143

    Article  CAS  Google Scholar 

  4. Bhargava S, Kubota M, Lewis R-D, Advani S-G, Prasad A-K, Deitzel JM (2015) Ultraviolet, water, and thermal aging studies of a waterborne polyurethane elastomer-based high reflectivity coating. Prog Org Coat 79:75–82

    Article  CAS  Google Scholar 

  5. Zhang S, Chen Z, Guo M, Bai H, Liu X (2015) Synthesis and characterization of waterborne UV-curable polyurethane modified with side-chain triethoxysilane and colloidal silica. Colloids Surf A 468:1–9

    Article  CAS  Google Scholar 

  6. Wu Q, Hu J (2016) Waterborne polyurethane based thermoelectric composites and their application potential in wearable thermoelectric textiles. Compos Part B Eng 107:59–66

    Article  CAS  Google Scholar 

  7. Wang C, Li X, Wang H, Fei G, Wen H (2017) In-situ polyurethane/polyacrylate microemulsion formation: the effects of acrylic content in wood coating application. Iran Polym J 26:753–763

    Article  CAS  Google Scholar 

  8. Li K, Peng J, Zhang M, Heng J, Li D, Mu C (2015) Comparative study of the effects of anatase and rutile titanium dioxide nanoparticles on the structure and properties of waterborne polyurethane. Colloids Surf A 470:92–99

    Article  CAS  Google Scholar 

  9. Tien Y-I, Wei K-H (2001) High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders. Macromolecules 34:9045–9052

    Article  CAS  Google Scholar 

  10. Maganty S, Roma MPC, Meschter SJ, Starkey D, Gomes M, Edwards DG, Ekin A, Elsken K, Cho J (2016) Enhanced mechanical properties of polyurethane composite coatings through nanosilica addition. Prog Org Coat 90:243–251

    Article  CAS  Google Scholar 

  11. Klinedinst D-B, Yilgör I, Yilgör E, Zhang M, Wilkes GL (2012) The effect of varying soft and hard segment length on the structure-property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments. Polymer 53:5358–5366

    Article  CAS  Google Scholar 

  12. Zia KM, Anjum S, Zuber M, Mujahid M, Jamil T (2014) Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int J Biol Macromol 66:26–32

    Article  CAS  PubMed  Google Scholar 

  13. Krause J (2009) Process for the production of cellular polyurethane (PUR) casting elastomers from storage-stable 1,5-naphthalenediisocyanate (NDI) prepolymers Patent US20090127921A1

  14. Nefzger H, Barnes JM, Wussow H-G, Krause J (2008) Process for the preparation of thermoplastic polyurethanes based on 1,5-naphthalene-diisocyanate, Patent US20080300377A1

  15. Proligheuer E-C, Barnes J-M, Kopp R, Von Seggern E (1992) Advances in NDI elastomer chemistry. J Elastom Plast 24:221–239

    Article  Google Scholar 

  16. Rao BN, Yadav PJP, Malkappa K, Jana T, Sastry PU (2015) Triazine functionalized hydroxyl terminated polybutadiene polyurethane: influence of triazine structure. Polymer 77:323–333

    Article  CAS  Google Scholar 

  17. Malkappa K, Rao BN, Suresh G, Ramana Ch-V, Jana T (2018) Organic/inorganic hybrid nanocolloids of water dispersible polyurethanes with antibacterial activity. Colloid Polym Sci 296:95–106

    Article  CAS  Google Scholar 

  18. Serkis M, Špiková M, Hodan J, Kredatusová J (2016) Nanocomposites made from thermoplastic waterborne polyurethane and colloidal silica. The influence of nanosilica type and amount on the functional properties. Prog Org Coat 101:342–349

    Article  CAS  Google Scholar 

  19. Malkappa K, Rao BN, Jana T (2016) Functionalized polybutadiene diol based hydrophobic, water dispersible polyurethane nanocomposites: role of organo-clay structure. Polymer 99:404–416

    Article  CAS  Google Scholar 

  20. Peruzzo PJ, Anbinder PS, Pardini FM, Pardini OR, Plivelic TS, Amalvy JI (2016) On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: effects on morphology and properties. Mater Today Commun 6:81–91

    Article  CAS  Google Scholar 

  21. Cakić SM, Ristić IS, M-Cincović M, Stojiljković DT, B-Simendic J (2016) Preparation and characterization of waterborne polyurethane/silica hybrid dispersions from castor oil polyols obtained by glycolysis poly(ethylene terephthalate) waste. Int J Adhes Adhes 70:329–341

    Article  CAS  Google Scholar 

  22. Kim BK, Seo JW, Jeong HM (2003) Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur Polym J 39:85–91

    Article  CAS  Google Scholar 

  23. Santamaria-Echart A, Ugarte L, Garcia-Astrain C, Arbelaiz A, Corcuera MA, Eceiza A (2016) Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydr Polym 151:1203–1209

    Article  CAS  PubMed  Google Scholar 

  24. Santamaria-Echart A, Ugarte L, Arbelaiz A, Gabilondo N, Corcuera MA, Eceiza A (2016) Two different incorporation routes of cellulose nanocrystals in waterborne polyurethane nanocomposites. Eur Polym J 76:99–109

    Article  CAS  Google Scholar 

  25. Pirmoradi F, Cheng L, Chiao M (2010) A magnetic poly(dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles. J Micromech Microeng 20:15–32

    Article  CAS  Google Scholar 

  26. Zhang S, Li Y, Peng L, Li Q, Chen S, Hou K (2013) Synthesis and characterization of novel waterborne polyurethane nanocomposites with magnetic and electrical properties. Compos Part A 55:94–101

    Article  CAS  Google Scholar 

  27. Chen S, Zhang S, Jin T, Zhao G (2016) Synthesis and characterization of novel covalently linked waterborne polyurethane/Fe3O4 nanocomposite films with superior magnetic, conductive properties and high latex storage stability. Chem Eng J 286:249–258

    Article  CAS  Google Scholar 

  28. Chen W, Morup S, Hansen MF, Banert T, Peuker UA (2008) A Mössbauer study of the chemical stability of iron oxide nanoparticles in PMMA and PVB beads. J Magn Magn Mater 320:2099–2105

    Article  CAS  Google Scholar 

  29. Sanaeifar N, Rabiee M, Abdolrahim M, Tahriri M, Vashaee D, Tayebi L (2017) A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal Biochem 519:19–26

    Article  CAS  PubMed  Google Scholar 

  30. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36

    Article  CAS  Google Scholar 

  31. Santos L-M, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier J-F, Martin F, Einloft S (2015) New magnetic nanocomposites: polyurethane/Fe3O4-synthetic talc. Eur Polym J 69:38–49

    Article  CAS  Google Scholar 

  32. Stormer FC, Mysterud I, Slagsvold T (2011) Evolution and possible storage of information in a magnetite system of significance for brain development. Med Hypotheses 76:901–904

    Article  CAS  PubMed  Google Scholar 

  33. Chen L, Zhou CH, Fiore S, Tong DS, Zhang H, Li CS, Ji SF, Yu WH (2016) Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications. Appl Clay Sci 127:143–163

    Article  CAS  Google Scholar 

  34. Abd El-Fattah M, El Saeed AM, Dardir MM, El-Sockary MA (2015) Studying the effect of organo- modified nanoclay loading on the thermal stability, flame retardant, anti-corrosive and mechanical properties of polyurethane nanocomposite for surface coating. Prog Org coat 89:212–219

    Article  CAS  Google Scholar 

  35. Mohammadi A, Barmar M, Barikani M (2013) Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites. J Mater Sci 48:7493–7502

    Article  CAS  Google Scholar 

  36. Alavi Nikje MM, Akbar R, Ghavidel R, Vakili M (2015) Preparation and characterization of magnetic rigid polyurethane foam reinforced with dipodal silane iron oxide nanoparticles Fe3O4@APTS/GPTS. Cell Polym 34:137–155

    Article  Google Scholar 

  37. Wu L, Li L, Li B, Zhang J, Wang A (2015) Magnetic, durable and superhydrophobic polyurethane@Fe3O4@SiO@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 7:4936–4946

    Article  CAS  PubMed  Google Scholar 

  38. Alavi Nikje MM, Tamaddoni Moghaddam S, Noruzian M, Farahmand Nejad MA, Shabani K, Haghshenas M, Shakhesi S (2014) Preparation and characterization of flexible polyurethane foam nanocomposites reinforced by magnetic core-shell Fe3O4@APTS nanoparticles. Colloid Polym Sci 292:627–633

    Article  CAS  Google Scholar 

  39. Zhenbin N, Xingyuan Z, Jiabing D, Heping Z (2007) Investigation of ultraviolet curable waterborne polyurethane acrylate dispersion based on hydroxyl-terminated polybutadiene. Front Chem China 2:151–155

    Article  Google Scholar 

  40. Sardon H, Irusta L, Aguirresarobe R-H, Fernandez-Berridi MJ (2014) Polymer/silica nanohybrids by means of tetraethoxysilane sol–gel condensation onto waterborne polyurethane particles. Prog Org Coat 77:1436–1442

    Article  CAS  Google Scholar 

  41. Nunes RCR, Pereira RA, Fonseca JLC, Pereira MR (2001) X-ray studies on compositions of polyurethane and silica. Polym Test 20:707–712

    Article  CAS  Google Scholar 

  42. Zhang L, Jiao H, Jiu H, Chang J, Zhang S, Zhao Y (2016) Thermal, mechanical and electrical properties of polyurethane/(3-aminopropyl) triethoxysilane functionalized graphene/epoxy resin interpenetrating shape memory polymer composites. Compos Part A 90:286–295

    Article  CAS  Google Scholar 

  43. Prakash J, Tripathi A, Pivin JC, Tripathi J, Chawla AK, Chandra R, Kim SS, Asokan K, Avasthi DK (2012) Study on synthesis of magnetic nanocomposite (Ni-teflon) by swift heavy ion beam mixing. Adv Mat Lett 2:71–75

    Article  CAS  Google Scholar 

  44. Fu H, Yan C, Zhou W, Huang H (2014) Nano-SiO2/fluorinated waterborne polyurethane nanocomposite adhesive for laminated films. J Ind Eng Chem 20:1623–1632

    Article  CAS  Google Scholar 

  45. Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C (2012) Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystal. Carbohydr Polym 87:2068–2075

    Article  CAS  Google Scholar 

  46. Xiong J, Zheng Z, Jiang H, Ye S, Wang X (2007) Reinforcement of polyurethane composites with an organically modified montmorillonite. Compos Part A 38:132–137

    Article  CAS  Google Scholar 

  47. Alavi Nikje MM, Farahmand Nejad MA, Shaabani K, Haghshenas M (2013) Preparation of magnetic polyurethane rigid foam nanocomposites. Colloid Polym Sci 291:903–909

    Article  CAS  Google Scholar 

  48. Pavličević J, Špírková M, Bera O, Jovičić M, Pilić B, Balos S, Budinski-Simendic J (2014) The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Compos Part B 60:673–679

    Article  CAS  Google Scholar 

  49. Jiang H, Zheng Z, Song W, Li Z, Wang X (2007) Alkoxysilane functionalized polyurethane/polysiloxane copolymers: synthesis and the effect of end-capping agent. Polym Bull 59:53–63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Imam Khomeini International University (IKIU) which supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Mohammad Alavi Nikje.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseini, Z., Nikje, M.M.A. Synthesis and characterization of a novel thermally stable water dispersible polyurethane and its magnetic nanocomposites. Iran Polym J 27, 733–743 (2018). https://doi.org/10.1007/s13726-018-0650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0650-5

Keywords

Navigation