Skip to main content
Log in

Morphology and properties of nanostructured epoxy blends toughened with epoxidized carboxyl-terminated liquid rubber

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber was epoxidized using hydrogen peroxide and formic acid, and the epoxidized CTBN (ECTBN) rubbers with different degrees of epoxidation were used to toughen the epoxy resin. The effects of epoxidation degree on the morphology and mechanical and thermal properties of the ECTBN/epoxy blends were then investigated. It was shown that the CTBN particles dispersed in the matrix in micro-scale, presenting sea–island structure, and the blends were opaque, whereas the ECTBN particles dispersed in nano-scale in the ECTBN/epoxy blends, forming nanostructure, and the blends presented good transparency. The glass transition temperatures of the blends decreased with rubber content or epoxidation degree. The mechanical properties of the ECTBN/epoxy blends and the traditional CTBN/epoxy blends were measured and compared, and better balanced properties were observed for the ECTBN/epoxy blends. After the addition of ECTBN, the impact strength and the tensile strength of the blends increased 2.3 and 1.6 times, respectively, and elongation-at-break was about 4 times that of the neat epoxy resin. In particular, the Young’s modulus improved or at least retained after the addition of ECTBN, being considerably higher than that of the CTBN-modified blends. Based on the morphology observations by SEM and TEM, the toughening mechanisms were discussed, and the excellent optical and mechanical properties of the ECTBN-modified blends could be attributed to the nanostructure formation and strong interfacial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ratna D, Banthia AK (2004) Rubber toughened epoxy. Macromol Res 12:11–21

    Article  CAS  Google Scholar 

  2. Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstruct fract Stud Polym 24:1341–1354

    CAS  Google Scholar 

  3. Sultan JN, McGarry FJ (1973) Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polym Eng Sci 13:29–34

    Article  CAS  Google Scholar 

  4. Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: a critical review. Polym Rev 49:201–225

    Article  CAS  Google Scholar 

  5. Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26:3828–3844

    Article  CAS  Google Scholar 

  6. Akbari R, Beheshty MH, Shervin M (2013) Toughening of dicyandiamide-cured DGEBA-based epoxy resins by CTBN liquid rubber. Iran Polym J 22:313–324

    Article  CAS  Google Scholar 

  7. Maazouz A, Sautereau H, Gerard JF (1994) Toughening of epoxy networks using pre-formed core-shell particles or reactive rubbers. Polym Bull 33:67–74

    Article  CAS  Google Scholar 

  8. He J, Raghavan D, Hoffman D, Hunston D (1999) The influence of elastomer concentration on toughness in dispersions containing preformed acrylic elastomeric particles in an epoxy matrix. Polymer 40:1923–1933

    Article  CAS  Google Scholar 

  9. Hayes BS, Seferis JC (2002) Influence of particle size distribution of preformed rubber on the structure and properties of composite systems. J Compos Mater 36:299–312

    Article  CAS  Google Scholar 

  10. Zhang JH, Zhang DH, Zhang AQ, Jia ZX, Jia DM (2013) Dendritic polyamidoamine-grafted halloysite nanotubes for fabricating toughened epoxy composites. Iran Polym J 22:501–510

    Article  CAS  Google Scholar 

  11. Shi H, Liu F, Yang L, Han E (2008) Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2. Prog Org Coat 62:359–368

    Article  CAS  Google Scholar 

  12. Omrani A, Afsar S, Safarpour MA (2010) Thermoset nanocomposites using hybrid nano TiO2–SiO2. Mater Chem Phys 122:343–349

    Article  CAS  Google Scholar 

  13. Li S, Hsu BL, Li F, Li CY, Harris FW, Cheng SZ (1999) A study of polyimide thermoplastics used as tougheners in epoxy resins—structure, property and solubility relationships. Thermochim Acta 340–341:221–229

    Article  Google Scholar 

  14. Rico M, López J, Montero B, Bellas R (2012) Phase separation and morphology development in a thermoplastic-modified toughened epoxy. Eur Polym J 48:1660–1673

    Article  CAS  Google Scholar 

  15. Hillmyer MA, Lipic PM, Hajduk DA, Almdal K, Bates FS (1997) Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J Am Chem Soc 119:2749–2750

    Article  CAS  Google Scholar 

  16. Lipic PM, Bates FS, Hillmyer MA (1998) Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J Am Chem Soc 120:8963–8970

    Article  CAS  Google Scholar 

  17. Zucchi IA, Galante MJ, Williams RJJ (2005) Comparison of morphologies and mechanical properties of crosslinked epoxies modified by polystyrene and poly (methyl methacrylate) or by the corresponding block copolymer polystyrene-b-poly (methyl methacrylate). Polymer 46:2603–2609

    Article  CAS  Google Scholar 

  18. Ocando C, Tercjak A, Serrano E, Ramos JA, Corona-Galván S, Parellada MD, Fernández-Berridi MJ, Mondragon I (2008) Micro-and macrophase separation of thermosetting systems modified with epoxidized styrene-block-butadiene-block-styrene linear triblock copolymers and their influence on final mechanical properties. Polym Int 57:1333–1342

    Article  CAS  Google Scholar 

  19. Xu SA, Wang GT, Mai YW (2013) Effect of hybridization of liquid rubber and nanosilica particles on the morphology, mechanical properties, and fracture toughness of epoxy composites. J Mater Sci 48:3546–3556

    Article  CAS  Google Scholar 

  20. Ruiz-Pérez L, Royston GJ, Fairclough JPA, Ryan AJ (2008) Toughening by nanostructure. Polymer 49:4475–4488

    Article  Google Scholar 

  21. Liu J, Thompson ZJ, Sue HJ, Bates FS, Hillmyer MA, Dettloff M, Jacob G, Verghese N, Pham H (2010) Toughening of epoxies with block copolymer micelles of wormlike morphology. Macromolecules 43:7238–7243

    Article  CAS  Google Scholar 

  22. Zhou H, Xu S (2014) A new method to prepare rubber toughened epoxy with high modulus and high impact strength. Mater Lett 121:238–240

    Article  CAS  Google Scholar 

  23. Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46:10506–10516

    Article  CAS  Google Scholar 

  24. Ocando C, Tercjak A, Mondragon I (2010) Nanostructured systems based on SBS epoxidized triblock copolymers and well-dispersed alumina/epoxy matrix composites. Compos Sci Technol 70:1106–1112

    Article  CAS  Google Scholar 

  25. Hsiue GH, Yang JM (1990) Epoxidation of styrene—butadiene—styrene block copolymer and use for gas permeation. J Polym Sci Part A Polym Chem 28:3761–3773

    Article  CAS  Google Scholar 

  26. Li H, Zeng X, Wu W (2008) Preparation and characterization of epoxidized styrene—isoprene—styrene tri-block copolymer using formic acid—hydrogen peroxide. J Elastomers Plast 40:317–330

    Article  CAS  Google Scholar 

  27. George SM, Puglia D, Kenny JM, Jyotishkumar P, Thomas S (2012) Cure kinetics and thermal stability of micro and nanostructured thermosetting blends of epoxy resin and epoxidized styrene-block-butadiene-block-styrene triblock copolymer systems. Polym Eng Sci 52:2336–2347

    Article  CAS  Google Scholar 

  28. Serrano E, Larrañaga M, Remiro PM, Mondragon I, Carrasco PM, Pomposo JA, Mecerreyes D (2004) Synthesis and characterization of epoxidized styrene-butadiene block copolymers as templates for nanostructured thermosets. Macromol Chem Phys 205:987–996

    Article  CAS  Google Scholar 

  29. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    Article  CAS  Google Scholar 

  30. Serrano E, Tercjak A, Ocando C, Larrañaga M, Parellada MD, Corona-Galván S, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I (2007) Curing behavior and final properties of nanostructured thermosetting systems modified with epoxidized styrene-butadiene linear diblock copolymers. Macromol Chem Phys 208:2281–2292

    Article  CAS  Google Scholar 

  31. Ocando C, Tercjak A, Martín MD, Ramos JA, Campo M, Mondragon I (2009) Morphology development in thermosetting mixtures through the variation on chemical functionalization degree of poly (styrene-b-butadiene) diblock copolymer modifiers. Thermomechanical Prop Macromol 42:6215–6224

    Article  CAS  Google Scholar 

  32. Serrano E, Tercjak A, Kortaberria G, Pomposo JA, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I (2006) Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers. Effect epoxidation degree. Macromolecules 39:2254–2261

    Article  CAS  Google Scholar 

  33. Grubbs RB, Dean JM, Broz ME, Bates FS (2000) Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 33:9522–9534

    Article  CAS  Google Scholar 

  34. Ritzenthaler S, Court F, David L, Girard-Reydet E, Leibler L, Pascault JP (2002) ABC triblock copolymers/epoxy-diamine blends 1. Keys to achieve nanostructured thermosets. Macromolecules 35:6245–6254

    Article  CAS  Google Scholar 

  35. Ritzenthaler S, Court F, Girard-Reydet E, Leibler L, Pascault JP (2003) ABC triblock copolymers/epoxy-diamine blends 2. Parameters controlling the morphologies and properties. Macromolecules 36:118–126

    Article  CAS  Google Scholar 

  36. Pearson RA, Yee AF (1986) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 21:2475–2488

    Article  CAS  Google Scholar 

  37. Tripathi G, Srivastava D (2007) Effect of carboxyl-terminated poly (butadiene- co-acrylonitrile)(CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. Mater Sci Eng, A 443:262–269

    Article  Google Scholar 

  38. Zhou W, Cai J (2012) Mechanical and dielectric properties of epoxy resin modified using reactive liquid rubber (HTPB). J Appl Polym Sci 124:4346–4351

    Article  CAS  Google Scholar 

  39. Mathew VS, Sinturel C, George SC, Thomas S (2010) Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties. J Mater Sci 45:1769–1781

    Article  CAS  Google Scholar 

  40. Zhao Y, Chen ZK, Liu Y, Xiao HM, Feng QP, Fu SY (2013) Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber. Compos Part A 55:178–187

    Article  CAS  Google Scholar 

  41. Yang G, Fu SY, Yang JP (2007) Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer 48:302–310

    Article  CAS  Google Scholar 

  42. Hameed N, Guo Q, Xu Z, Hanley TL, Mai Y-W (2010) Reactive block copolymer modified thermosets: highly ordered nanostructures and improved properties. Soft Matter 6:6119–6129

    Article  CAS  Google Scholar 

  43. Sue HJ, Puckett PM, Bertram JL, Walker LL, Garcia-Meitin EI (1999) Structure and property relationships in model diglycidyl ether of bisphenol-A and diglycidyl ether of tetramethyl bisphenol-A epoxy systems I. Mechanical property characterizations. J Polym Sci Part B Polym Phys 37:2137–2149

    Article  CAS  Google Scholar 

  44. Thomas R, Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, Moldenaers P, Thomas S (2007) Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin—effects of a liquid rubber inclusion. Polymer 48:1695–1710

    Article  CAS  Google Scholar 

  45. Levita G, De Petris S, Marchetti A, Lazzeri A (1991) Crosslink density and fracture toughness of epoxy resins. J Mater Sci 26:2348–2352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (No. 51463020), the Fundamental Research Funds for the Central University, and the Foundation from Qinghai Science and Technology Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Ai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Song, XX., Liang, CS. et al. Morphology and properties of nanostructured epoxy blends toughened with epoxidized carboxyl-terminated liquid rubber. Iran Polym J 24, 425–435 (2015). https://doi.org/10.1007/s13726-015-0334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0334-3

Keywords

Navigation