Skip to main content

Advertisement

Log in

The Influence of Bariatric Surgery on Serum Bile Acids in Humans and Potential Metabolic and Hormonal Implications: a Systematic Review

  • Metabolism (P Trayhurn, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Recent research suggests a mechanistic role for bile acids (BA) in the metabolic improvement following bariatric surgery. It is believed that the hormonal and metabolic effects associated with changes in systemic BAs may be related to the farnesoid X receptor (FXR) and a G-protein coupled receptor (TGR5). This systematic review examines changes in systemic BAs following bariatric procedures. Studies were included if they reported the measurement of systemic BAs in humans at at least one time point after bariatric surgery. Eleven papers were identified that met the inclusion criteria. Seven studies reported the effect of Roux-en-Y gastric bypass (RYGB) on fasting BAs. The majority (6/7) reported that fasting BAs increased after RYGB. Data regarding fasting BAs after vertical sleeve gastrectomy (VSG) and laparoscopic gastric banding (LAGB) are inconsistent. Data regarding post-prandial BA changes after RYGB, VSG, and LAGB are also inconsistent. More research is needed to investigate the connection between BAs and the metabolic improvement seen after bariatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am J Physiol Regul Integr Comp Physiol. 2014;307:R1275–91.

    Article  CAS  PubMed  Google Scholar 

  2. Goncalves D, Barataud A, De Vadder F, et al. Bile Routing modification reproduces key features of gastric bypass in rat. Ann Surg. 2015. This study shows that the benefits of RYGB in rats are related to bile routing modifications.

  3. Svane MS, Bojsen-Møller KN, Madsbad S, et al. Updates in weight loss surgery and gastrointestinal peptides. Curr Opin Endocrinol Diabet Obes. 2015;22:21–8.

    Article  CAS  Google Scholar 

  4. Staels B, Fonseca VA. Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care. 2009;32 Suppl 2:S237–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91.

    Article  CAS  PubMed  Google Scholar 

  6. Chiang JYL. Bile acids: regulation of synthesis. J Lipid Res. 2009;50:1955–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Handelsman Y. Role of bile acid sequestrants in the treatment of type 2 diabetes. Diabetes Care. 2011;34 Suppl 2:S244–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hansen M, Sonne DP, Knop FK. Bile acid sequestrants: glucose-lowering mechanisms and efficacy in type 2 diabetes. Curr Diab Rep. 2014;14:482.

    Article  PubMed  Google Scholar 

  9. Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.

    Article  CAS  PubMed  Google Scholar 

  10. Parks DJ. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543–53.

    Article  CAS  PubMed  Google Scholar 

  12. Takeda S, Kadowaki S, Haga T, et al. Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett. 2002;520:97–101.

    Article  CAS  PubMed  Google Scholar 

  13. Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–40.

    Article  CAS  PubMed  Google Scholar 

  14. Glicksman C, Pournaras DJ, Wright M, et al. Postprandial plasma bile acid responses in normal weight and obese subjects. Ann Clin Biochem. 2010;47:482–4.

    Article  CAS  PubMed  Google Scholar 

  15. Gerhard GS, Styer AM, Wood GC, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-y gastric bypass. Diabetes Care. 2013;36:1859–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jansen PLM, Van Werven J, Aarts E, et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig Dis. 2011;29:48–51.

    Article  PubMed  Google Scholar 

  17. Simonen M, Dali-Youcef N, Kaminska D, et al. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass. Obes Surg US. 2012;22:1473–80.

    Article  CAS  Google Scholar 

  18. Werling M, Vincent RP, Cross GF, et al. Enhanced fasting and post-prandial plasma bile acid responses after Roux-en-Y gastric bypass surgery. Scand J Gastroenterol. 2013;48:1257–64.

    Article  PubMed  Google Scholar 

  19. Pournaras DJ, Glicksman C, Vincent RP, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153:3613–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kohli R, Myronovych A, Xanthakos S, et al. Sleeve gastrectomy in mice and humans results in weight loss independent suppression of hepatic bile acid synthesis. Gastroenterology. 2013;S319–20.

  21. Steinert RE, Peterli R, Keller S, et al. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity. 2013;21:E660–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nakatani H, Kasama K, Oshiro T, et al. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metabolism. Elsevier Inc.; 2009;58:1400–7.

  23. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509:183–8. This study provides evidence of a molecular mechanism involving FXR in the success of weight loss following VSG in mice.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bhutta HY, Rajpal N, White W, et al. Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats. PLoS One. 2015;10:e0122273.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Myronovych A, Kirby M, Seeley R, et al. Sleeve gastrectomy in obese mice results in elevated serum bile acids and reduced hepatic steatosis that correlate with weight loss post surgery. Gastroenterology. 2012;S13.

  26. Myronovych A, Kirby M, Ryan KK, et al. Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity. 2014;22:390–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003;83:633–71.

    Article  CAS  PubMed  Google Scholar 

  28. Chiang JYL. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol. 2004;40:539–51.

    Article  CAS  PubMed  Google Scholar 

  29. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74.

    Article  CAS  PubMed  Google Scholar 

  30. Li T, Chiang JYL. Nuclear receptors in bile acid metabolism. Drug Metab Rev. 2013;45:145–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Patti M-E, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity. 2009;17:1671–7.

    Article  CAS  PubMed  Google Scholar 

  33. Haluzíková D, Lacinová Z, Kaválková P, et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects. Obesity. 2013;21:1335–42.

    Article  PubMed  Google Scholar 

  34. Ahmad N, Pfalzer A, Kaplan L. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int J Obes. 2013;37:1553–9.

    Article  CAS  Google Scholar 

  35. Dirksen C, Jørgensen N, Bojsen-Møller K, et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes. 2013;37:1452–9.

    Article  CAS  Google Scholar 

  36. Kohli R, Bradley D, Setchell KD, et al. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab. 2013;98:E708–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Mazuy C, Helleboid A, Staels B, et al. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol life Sci. 2014;1631–50.

  38. Cyphert HA, Ge X, Kohan AB, et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J Biol Chem. 2012;287:25123–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143:1741–7.

    Article  CAS  PubMed  Google Scholar 

  40. Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145:2594–603.

    Article  CAS  PubMed  Google Scholar 

  41. Hotta Y, Nakamura H, Konishi M, et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology. 2009;150:4625–33.

    Article  CAS  PubMed  Google Scholar 

  42. Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115:1627–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Zhang X, Yeung DCY, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57:1246–53.

    Article  CAS  PubMed  Google Scholar 

  44. Woo YC, Xu A, Wang Y, et al. Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin Endocrinol (Oxf). 2013;78:489–96.

    Article  CAS  Google Scholar 

  45. Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012;26:312–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Watanabe M, Houten S, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiom in obese and lean twins. Nature. 2009;457:480–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ridlon JM, Kang DJ, Hylemon PB, et al. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30:332–8.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Liou AP, Paziuk M, Luevano J-M, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Raghow R. Ménage-à-trois of bariatric surgery, bile acids and the gut microbiome. World J Diabet. 2015;6:367–70.

    Article  Google Scholar 

  53. Lundåsen T, Gälman C, Angelin B, et al. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med. 2006;260:530–6.

    Article  PubMed  Google Scholar 

  54. Gälman C, Angelin B, Rudling M. Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology. 2005;129:1445–53.

    Article  PubMed  Google Scholar 

  55. Everson GT. Steady-state kinetics of serum bile acids in healthy human subjects: single and dual isotope techniques using stable isotopes and mass spectrometry. J Lipid Res. 1987;28:238–52.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Abigail Cole and Levi Teigen contributed equally to this work under the joint guidance of Shalamar Sibley and Carrie Earthman.

Compliance with Ethics Guidelines

Conflict of Interest

Abigail J. Cole, Levi M. Teigen, Cyrus Jahansouz, Carrie P. Earthman, and Shalamar D. Sibley declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie P. Earthman.

Additional information

This article is part of the Topical Collection on Metabolism

Appendix 1. EMBASE Search Conducted 2/19/2015

Appendix 1. EMBASE Search Conducted 2/19/2015

  1. 1

    exp bile acid/ (47257)

  2. 2

    bile acid*.mp. (32762)

  3. 3

    1 or 2 (54345)

  4. 4

    exp stomach bypass/ (11635)

  5. 5

    gastric bypass.mp. (10950)

  6. 6

    exp bariatric surgery/ (20128)

  7. 7

    bariatric surgery.mp. (18667)

  8. 8

    weight loss surgery.mp. (733)

  9. 9

    exp roux y anastomosis/ (6784)

  10. 10

    roux-en-y.mp. (10066)

  11. 11

    exp gastric sleeve/ (209)

  12. 12

    gastric sleeve.mp. (372)

  13. 13

    exp sleeve gastrectomy/ (3797)

  14. 14

    sleeve gastrectomy.mp. (4643)

  15. 15

    metabolic surgery.mp. (533)

  16. 16

    4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 (33371)

  17. 17

    3 and 16 (497)

  18. 18

    limit 17 to (human and (adult <18 to 64 years > or aged <65+ years>)) (75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, A.J., Teigen, L.M., Jahansouz, C. et al. The Influence of Bariatric Surgery on Serum Bile Acids in Humans and Potential Metabolic and Hormonal Implications: a Systematic Review. Curr Obes Rep 4, 441–450 (2015). https://doi.org/10.1007/s13679-015-0171-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-015-0171-x

Keywords

Navigation