Skip to main content

Advertisement

Log in

Sustainable Diets for Athletes

  • Sports Nutrition (L Cialdella Kam, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sustainable production and healthy consumption have been the topic of recent publications. Due to the high environmental impact of the current food system, significant changes in how food is produced, distributed, and consumed are needed in all sectors and groups. While most research in sustainable diets has focused on the general population, limited work has involved athletes. The purpose of this review is to summarize the current knowledge on food and sustainability in athletes.

Recent Findings

Meeting but not exceeding protein requirements through flexitarian and plant-based approaches, reducing packaged foods and food waste, and prioritizing seasonal produce were identified as possible mitigation options in athletes.

Summary

There is urgency for more research on plant-centric, whole food–based strategies for post-exercise skeletal muscle and training adaptation, the effect of sustainable diets on health and performance, and behaviors to reduce packaging and food waste in athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.

  2. Brundtland G. Report of the World Commision on Environement and Development: our common future, vol. 400: Oxford Pap; 1987. https://doi.org/10.2307/2621529.

  3. United Nations Assembly Transforming our world: the 2030 Agenda for Sustainable Development. New York United Nations. 2015;(1):1–41. DOI: https://doi.org/10.1007/s13398-014-0173-7.2.

  4. FAO. Sustainable diets and biodiversity. Rome: Food and Agriculture Organisation of the United Nations (FAO); 2010. p. 1–309.

  5. • Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet. 2019;393(10173):791–846. https://doi.org/10.1016/S0140-6736(18)32822-8This expert report by the Lancet Commission addresses the pandemics of obesity, undernutrition, and climate changes as a global syndemic or synergy of epidemics, proposing recommendations with concrete actions to address the problems across their systems.

    Article  PubMed  Google Scholar 

  6. FAO. Plates, pyramids, planets. Developments in national healthy and sustainable dietary guidelines: a state of play assessment: Food and Agriculture Organisation of the United Nations (FAO) and the Food Climate Research Network at The University of Oxford (FCRN); 2016. p. 1–80.

  7. • Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447–92 http://www.ncbi.nlm.nih.gov/pubmed/30660336. This scientific publication from the EAT-Lancet Commission is a call to action for the great food transformation to accommodate the need to feed a growing global population with healthy food from sustainable foods systems. The Commission proposes a universal healthy reference diet with a decrease in consumption of red meat, sugar, and refined grains and an increase in vegetables, fruits, whole grains, legumes, and nuts for the benefit of health and sustaining a healthy planet.

    Article  Google Scholar 

  8. Saxe H. The new Nordic diet is an effective tool in environmental protection: it reduces the associated socioeconomic cost of diets. Am J Clin Nutr. 2014;99(5):1117–25. https://doi.org/10.3945/ajcn.113.066746.

    Article  CAS  PubMed  Google Scholar 

  9. Dooren C Van, Aiking H. Defining a nutritionally healthy, environmentally friendly, and culturally acceptable Low Lands Diet. In: Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014). San Francisco: ACLCA, Vashon, WA, USA; 2014.

  10. Aiking H. Protein production: planet, profit, plus people? Am J Clin Nutr. 2014;100(S.1):483–9. https://doi.org/10.3945/ajcn.113.071209.

    Article  CAS  Google Scholar 

  11. Esteve-Llorens X, Darriba C, Moreira MT, Feijoo G, González-García S. Towards an environmentally sustainable and healthy Atlantic dietary pattern: life cycle carbon footprint and nutritional quality. Sci Total Environ. 2019;646:704–15. https://doi.org/10.1016/j.scitotenv.2018.07.264.

    Article  CAS  PubMed  Google Scholar 

  12. • Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science. 2018;360:987–92. https://doi.org/10.1126/science.aaq0216This study provides the first global harmonized database on the variation of food’s impacts on different steps in the supply chain, including five environmental indicators. The paper also provides an integrated mitigation framework of environmental impact of food systems and products from production to consumption.

    Article  CAS  PubMed  Google Scholar 

  13. Dernini S, Berry EM, Vecchia C, La CR. Review article Med Diet 4.0: the Mediterranean diet with four sustainable benefits. Public Health Nutr. 2017:6–14. https://doi.org/10.1017/S1368980016003177.

  14. Pelly F, Meyer NL, Pearce J, Burkhart SJ, Burke LM. Evaluation of food provision and nutrition support at the London 2012 Olympic Games: the opinion of sports nutrition experts. Int J Sport Nutr Exerc Metab [Internet]. 2014;24(6):674–83. https://doi.org/10.1123/ijsnem.2013-0218.

    Article  Google Scholar 

  15. Meyer NL. Good food, health and sustainability: an introduction for health professionals. ACSM’s Health & Fitness Journal. 2015; 19(4):12–21. https://doi.org/10.1249/FIT.0000000000000136.

  16. •• Meyer N, Reguant-Closa A. “Eat as if you could save the planet and win!” Sustainability integration into nutrition for exercise. Nutrients. 2017;9(412). https://doi.org/10.3390/nu9040412This concept paper provides the reader with an extensive overview of the integration of sustainability applicable to exercise and sports nutrition. The paper is divided into environmental impacts of the food system, sustainability and health duality, global integration of sustainability in dietary guidelines, and a practical section with focus on animal and plant proteins, diet diversity, and quality, with recommendations and tools to get started.

  17. • Reguant-Closa A, Harris MM, Lohman TG, Meyer NL. Validation of the Athlete’s Plate Nutrition Educational Tool: phase I. Int J Sport Nutr Exerc Metab. 2019:1–26. https://doi.org/10.1123/ijsnem.2018-0346This validation of the Athlete’s Plate Nutrition Education Tool identified higher protein proportions than recommended, mainly stemming from animal sources. This paper highlights the importance of integrating sustainability while maintaining health and performance when making recommendations for athletes.

  18. •• Lynch H, Johnston C, Wharton C. Plant-based diets: considerations for environmental impact, protein quality, and exercise performance. Nutrients. 2018;10(12). https://doi.org/10.3390/nu10121841This review examines the impact of plant-based diets on physical health, environmental sustainability, and exercise performance. Plant-based diets do not seem to provide advantages or disadvantages on exercise performance, but plant-based diets can reduce the risk of chronic disease and have a lower environmental impact.

  19. • Burd NA, CF MK, Salvador AF, KJM P, Moore DR. Dietary protein quantity, quality, and exercise are key to healthy living: a muscle-centric perspective across the lifespan. Front Nutr. 2019;6:83. https://doi.org/10.3389/fnut.2019.00083This paper discusses protein recommendations for physical activity through the lifespan. The paper highlights the importance of protein quantity, quality, and timing for exercise but includes a vision for protein as a component of a whole food approach, where interactions with other foods can affect muscle mass at different life stages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl 1):S17–27. https://doi.org/10.1080/02640414.2011.585473.

    Article  PubMed  Google Scholar 

  21. Phillips SM, Van Loon LJC. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(sup1):S29–38. https://doi.org/10.1080/02640414.2011.619204.

    Article  PubMed  Google Scholar 

  22. Thomas DT, Erdman KA, Burke LM. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3):543–68. https://doi.org/10.1249/MSS.0000000000000852.

    Article  CAS  PubMed  Google Scholar 

  23. Della Guardia L, Cavallaro M, Cena H. The risks of self-made diets: the case of an amateur bodybuilder. J Int Soc Sports Nutr. 2015;12(1):16. https://doi.org/10.1186/s12970-015-0077-8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Spendlove J, Mitchell L, Gifford J, Hackett D, Slater G, Cobley S, et al. Dietary intake of competitive bodybuilders. Sports Med. 2015;45(7):1041–63. https://doi.org/10.1007/s40279-015-0329-4.

  25. Lohman R, Carr A, Condo D. Nutritional intake in Australian football players: sports nutrition knowledge and macronutrient and micronutrient intake. Int J Sport Nutr Exerc Metab. 2019;29(3):289–96. https://doi.org/10.1123/ijsnem.2018-0031.

    Article  CAS  PubMed  Google Scholar 

  26. Lis D, Stellingwerff T, Shing CM, Ahuja KDK, Fell J. Exploring the popularity, experiences and beliefs surrounding gluten-free diets in non-coeliac athletes. Int J Sport Nutr Exerc Metab. 2015;25(1):37–45. https://doi.org/10.1123/ijsnem.2013-0247.

    Article  PubMed  Google Scholar 

  27. Lis DM, Kings D, Larson-Meyer DE. Dietary practices adopted by track-and-field athletes: gluten-free, low FODMAP, vegetarian, and fasting. Int J Sport Nutr Exerc Metab [Internet]. 2019;29(2):236–45. https://doi.org/10.1123/ijsnem.2018-0309.

    Article  CAS  Google Scholar 

  28. Jovanov P, Đorđić V, Obradović B, Barak O, Pezo L, Marić A, et al. Prevalence, knowledge and attitudes towards using sports supplements among young athletes. J Int Soc Sports Nutr. 2019;16(1):27. https://doi.org/10.1186/s12970-019-0294-7.

  29. Madden R, Shearer J, Parnell J. Evaluation of dietary intakes and supplement use in paralympic athletes. Nutrients. 2017;9(11):1266. https://doi.org/10.3390/nu9111266.

    Article  CAS  PubMed Central  Google Scholar 

  30. Abbey EL, Wright CJ, Kirkpatrick CM. Nutrition practices and knowledge among NCAA Division III football players. J Int Soc Sports Nutr. 2017;14:13. https://doi.org/10.1186/s12970-017-0170-2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Garnett T. Plating up solutions. Science. 2016;353(6305):1202–1204. https://doi.org/10.1126/science.aah4765

  32. Falcone G, Iofrida N, Stillitano T, De Luca AI. Impacts of food and diets’ life cycle: a brief review. Curr Opin Environ Sci Heal. 2020;13:75–9. https://doi.org/10.1016/J.COESH.2019.12.002.

    Article  Google Scholar 

  33. Nemecek T, Jungbluth N, Canals LM, Schenck R. Environmental impacts of food consumption and nutrition: where are we and what is next? Int J Life Cycle Assess. 2016;21:607–20. https://doi.org/10.1007/s11367-016-1071-3.

    Article  Google Scholar 

  34. Fraval S, van Middelaar CE, Ridoutt BG, Opio C. Life cycle assessment of food products. In: Encyclopedia of food security and sustainability: Elsevier; 2019. p. 488–96. https://doi.org/10.1016/B978-0-08-100596-5.22221-X.

  35. ISO 14040:2006. Environmental management - life cycle assessment - principles and framework. 2006.

  36. Bystricky M, Alig M, Nemecek T, Gaillard G. Life-cycle assessment of Swiss agricultural products compared with imports. Agrar Schweiz. 2015;6:264–9.

    Google Scholar 

  37. Molina-Besch K, Wikström F, Williams H. The environmental impact of packaging in food supply chains—does life cycle assessment of food provide the full picture? Int J Life Cycle Assess. 2019;24(1):37–50. https://doi.org/10.1007/s11367-018-1500-6.

    Article  Google Scholar 

  38. Williams H, Wikström F. Environmental impact of packaging and food losses in a life cycle perspective: a comparative analysis of five food items. J Clean Prod. 2011;19(1):43–8. https://doi.org/10.1016/j.jclepro.2010.08.008.

    Article  Google Scholar 

  39. Jones AD, Hoey L, Blesh J, Miller L, Green A, Shapiro LF. A systematic review of the measurement of sustainable diets. Adv Nutr An Int Rev J. 2016;7(4):641–64. https://doi.org/10.3945/an.115.011015.

    Article  Google Scholar 

  40. Aleksandrowicz L, Green R, Joy EJM, Smith P, Haines A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS One. 2016;11(11):1–16. Available from:. https://doi.org/10.1371/journal.pone.0165797.

    Article  CAS  Google Scholar 

  41. • Chai BC, van der Voort JR, Grofelnik K, Eliasdottir HG, Klöss I, FJA P-C. Which diet has the least environmental impact on our planet? A systematic review of vegan, vegetarian and omnivorous diets. Sustainability. 2019;11(15):4110. https://doi.org/10.3390/su11154110This systematic review examines the environmental impact of vegan, vegetarian, and omnivorous diets. The results of this review suggest that a vegan diet has the lowest level of GhGe, water, and land use per 2000 kcal consumed.

    Article  CAS  Google Scholar 

  42. Hallström E, Carlsson-Kanyama A, Börjesson P. Environmental impact of dietary change: a systematic review. J Clean Prod. 2015;91:1–11. https://doi.org/10.1016/j.jclepro.2014.12.008.

    Article  Google Scholar 

  43. Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014;515(7528):518–22. https://doi.org/10.1038/nature13959.

    Article  CAS  PubMed  Google Scholar 

  44. Soret S, Mejia A, Batech M, Jaceldo-Siegl K, Harwatt H, Sabaté J. Climate change mitigation and health effects of varied dietary patterns in real-life settings throughout North America. Am J Clin Nutr. 2014;100(SUPPL. 1):490–5. https://doi.org/10.3945/ajcn.113.071589.

    Article  CAS  Google Scholar 

  45. Baroni L, Cenci L, Tettamanti M, Berati M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur J Clin Nutr. 2007;61:279–86. https://doi.org/10.1038/sj.ejcn.1602522.

    Article  CAS  PubMed  Google Scholar 

  46. van de Kamp ME, van Dooren C, Hollander A, Geurts M, Brink EJ, van Rossum C, et al. Healthy diets with reduced environmental impact? – the greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. Food Res Int. 2018;104:14–24. https://doi.org/10.1016/j.foodres.2017.06.006.

  47. Ridoutt BG, Hendrie GA, Noakes M. Dietary strategies to reduce environmental impact: a critical review of the evidence. Adv Nutr. 2017;8(6):933–46. https://doi.org/10.3945/an.117.016691.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Behrens P, Kiefte-de Jong JC, Bosker T, Rodrigues JFD, de Koning A, Tukker A. Evaluating the environmental impacts of dietary recommendations. Proc Natl Acad Sci U S A. 2017;114(51):13412–7. https://doi.org/10.1073/pnas.1711889114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mertens E, Kuijsten A, van Zanten HH, Kaptijn G, Dofková M, Mistura L, et al. Dietary choices and environmental impact in four European countries. J Clean Prod. 2019;237:117827. https://doi.org/10.1016/J.JCLEPRO.2019.117827.

    Article  Google Scholar 

  50. Walker C, Gibney ER, Mathers JC, Hellweg S. Comparing environmental and personal health impacts of individual food choices. Sci Total Environ. 2019;685:609–20. https://doi.org/10.1016/j.scitotenv.2019.05.404.

    Article  CAS  PubMed  Google Scholar 

  51. Heller MC, Willits-Smith A, Meyer R, Keoleian GA, Rose D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ Res Lett. 2018;13(4):044004. https://doi.org/10.1088/1748-9326/aab0ac.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Van Kernebeek HRJ, Oosting SJ, Feskens EJM, Gerber PJ, De Boer IJM. The effect of nutritional quality on comparing environmental impacts of human diets. J Clean Prod. 2014;73:88–99. https://doi.org/10.1016/j.jclepro.2013.11.028.

    Article  CAS  Google Scholar 

  53. • Saarinen M, Fogelholm M, Tahvonen R, Kurppa S. Taking nutrition into account within the life cycle assessment of food products. J Clean Prod. 2017;149:828–44. https://doi.org/10.1016/j.jclepro.2017.02.062This paper develops a methodology to include nutrition and environmental aspects when conducting life cycle assessment of food products. The study considers nutrients (individually or combined) as a functional unit, aiming to identify a process to categorize sustainable or unsustainable foods.

    Article  Google Scholar 

  54. Sonesson U, Davis J, Flysjö A, Gustavsson J, Witthöft C. Protein quality as functional unit – a methodological framework for inclusion in life cycle assessment of food. J Clean Prod. 2017;140:470–8. https://doi.org/10.1016/j.jclepro.2016.06.115.

    Article  Google Scholar 

  55. Tessari P, Lante A, Mosca G. Essential amino acids: master regulators of nutrition and environmental footprint? Sci Rep. 2016;6:26074. https://doi.org/10.1038/srep26074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. •• Berardy A, Johnston CS, Plukis A, Vizcaino M, Wharton C. Integrating protein quality and quantity with environmental impacts in life cycle assessment. Sustainability. 2019;11:2747. https://doi.org/10.3390/su11102747This paper presents a novel approach to incorporate the Digestible Indispensable Amino Acid Score (DIAAS) to integrate protein quality and quantity (typical serving sizes) when comparing LCA data. The study proposes a new approach to evaluate nutrition and environmental sustainability of protein-rich foods and is thus critical for the field of sports nutrition.

    Article  CAS  Google Scholar 

  57. Conrad Z, Niles MT, Neher DA, Roy ED, Tichenor NE, Jahns L. Relationship between food waste, diet quality, and environmental sustainability. Marelli B, editor. PLoS One. 2018;13(4):e0195405. https://doi.org/10.1371/journal.pone.0195405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beretta C, Hellweg S. Potential environmental benefits from food waste prevention in the food service sector. Resour Conserv Recycl. 2019;147:169–78. https://doi.org/10.1016/j.resconrec.2019.03.023.

    Article  Google Scholar 

  59. Stoessel F, Juraske R, Pfister S, Hellweg S. Life cycle inventory and carbon and water foodprint of fruits and vegetables: application to a swiss retailer. Environ Sci Technol. 2012;46(6):3253–62. https://doi.org/10.1021/es2030577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reynolds CJ. Energy embodied in household cookery: the missing part of a sustainable food system? Part 1: a method to survey and calculate representative recipes. In: B. G, S.A. T, editor. 1st International Conference on Sustainable Energy and Resource Use in Food Chains, ICSEF 2017. University of Sheffield, Department of Geography, Faculty of Social Sciences, Winter Street, Sheffield, S3 7ND. Oxford: Elsevier Ltd; 2017. p. 220–7. https://doi.org/10.1016/j.egypro.2017.07.245.

    Chapter  Google Scholar 

  61. Canning P, Charles A, Huang S, Polenske KR, Waters A. Energy Use in the U.S. Food System. U.S. Dept of Agri, Econ Res Serv. 2010; (94).

  62. Ahmad S, Wong KY, Ahmad R. Life cycle assessment for food production and manufacturing: recent trends, global applications and future prospects. Procedia Manuf. 2019;34:49–57. https://doi.org/10.1016/j.promfg.2019.06.113.

    Article  Google Scholar 

  63. Arcand Y, Maxime D, Zareifard R. Life cycle assessment of processed food. Boston: Springer; 2012. p. 115–48.

    Google Scholar 

  64. Wunderlich SM, Feldman C, Kane S, Hazhin T. Nutritional quality of organic, conventional, and seasonally grown broccoli using vitamin C as a marker. Int J Food Sci Nutr. 2008;59(1):34–45. https://doi.org/10.1080/09637480701453637.

    Article  CAS  PubMed  Google Scholar 

  65. Batziakas KG, Talavera M, Swaney-Stueve M, Rivard CL, Pliakoni ED. Descriptive analysis and consumer acceptability of locally and commercially grown spinach. J Food Sci. 2019;84(8):2261–8. https://doi.org/10.1111/1750-3841.14710.

    Article  CAS  PubMed  Google Scholar 

  66. Phillips KM, Tarrago-Trani MT, McGinty RC, Rasor AS, Haytowitz DB, Pehrsson PR. Seasonal variability of the vitamin C content of fresh fruits and vegetables in a local retail market. J Sci Food Agric. 2018;98(11):4191–204. https://doi.org/10.1002/jsfa.8941.

    Article  CAS  PubMed  Google Scholar 

  67. Macdiarmid JI. Seasonality and dietary requirements: will eating seasonal food contribute to health and environmental sustainability? Proc Nutr Soc. 2014;73:368–75. https://doi.org/10.1017/S0029665113003753.

    Article  PubMed  Google Scholar 

  68. van Zanten HHE, Mollenhorst H, Klootwijk CW, van Middelaar CE, de Boer IJM. Global food supply: land use efficiency of livestock systems. Int J Life Cycle Assess. 2016;21:747–58. https://doi.org/10.1007/s11367-015-0944-1.

    Article  CAS  Google Scholar 

  69. Ertl P, Klocker H, Hörtenhuber S, Knaus W, Zollitsch W. The net contribution of dairy production to human food supply: the case of Austrian dairy farms. Agric Syst. 2015;137:119–25. https://doi.org/10.1016/j.agsy.2015.04.004.

    Article  Google Scholar 

  70. de Vries M, de Boer IJM. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci. 2010;128(1–3):1–11. https://doi.org/10.1016/J.LIVSCI.2009.11.007.

    Article  Google Scholar 

  71. Bibbiani C, Fronte B, Incrocci L, Campiotti C. Life cycle impact of industrial aquaculture systems: a review. Calitatea. 2018;19(S1):67–71.

    Google Scholar 

  72. Malowany JM, West DWD, Williamson E, Volterman KA, Abou Sawan S, Mazzulla M, et al. Protein to maximize whole-body anabolism in resistance-trained females after exercise. Med Sci Sports Exerc. 2019;51(4):798–804. https://doi.org/10.1249/MSS.0000000000001832.

    Article  CAS  PubMed  Google Scholar 

  73. Gillen JB, West DWD, Williamson EP, Fung HJW, Moore DR. Low-carbohydrate training increases protein requirements of endurance athletes. Med Sci Sport Exerc. 2019;51(11):2294–301. https://doi.org/10.1249/MSS.0000000000002036.

    Article  CAS  Google Scholar 

  74. Phillips SM. A brief review of higher dietary protein diets in weight loss: a focus on athletes. Sport Med. 2014;44:149–53. https://doi.org/10.1007/s40279-014-0254-y.

    Article  Google Scholar 

  75. Witard OC, Garthe I, Phillips SM. Dietary protein for training adaptation and body composition manipulation in track and field athletes. Int J Sport Nutr Exerc Metab. 2019;29(2):165–74. https://doi.org/10.1123/ijsnem.2018-0267.

    Article  CAS  PubMed  Google Scholar 

  76. Murphy CH, Hector AJ, Phillips SM. Considerations for protein intake in managing weight loss in athletes. Eur J Sport Sci. 2015;15(1):21–8. https://doi.org/10.1080/17461391.2014.936325.

    Article  PubMed  Google Scholar 

  77. Hector A, Phillips SM. Protein recommendations for weight loss in elite athletes: a focus on body composition and performance. Int J Sport Nutr Exerc Metab. 2017;32:1–26. https://doi.org/10.1123/ijsnem.2017-0273.

    Article  CAS  Google Scholar 

  78. Helms ER, Zinn C, Rowlands DS, Brown SR. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: a case for higher intakes. Int J Sport Nutr Exerc Metab. 2014;24(2):127–38. https://doi.org/10.1123/ijsnem.2013-0054.

    Article  CAS  PubMed  Google Scholar 

  79. Phillips SM. Current concepts and unresolved questions in dietary protein requirements and supplements in adults. Front Nutr. 2017;4:13. https://doi.org/10.3389/fnut.2017.00013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2015;70(1):57–62. https://doi.org/10.1093/gerona/glu103.

  81. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, et al. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010;92(5):1080–8. https://doi.org/10.3945/ajcn.2010.29819.

  82. Areta JL, Burke LM, Ross ML, Camera DM, West DWD, Broad EM, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591(9):2319–31. https://doi.org/10.1113/jphysiol.2012.244897.

  83. • Moore DR. Maximizing post-exercise anabolism: the case for relative protein intakes. Front Nutr. 2019;6:147. https://doi.org/10.3389/fnut.2019.00147This review highlights the importance to adjust protein recommendations dependent on individual body weight and advises an intake of 0.31 g kg−1of high-quality protein after resistance training to maximize post-exercise muscle anabolism. The review highlights the need for further research on foods with suboptimal amino acid composition (e.g., plant-based) or chronic low energy intake among others.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86–95. https://doi.org/10.3945/ajcn.112.055517.

    Article  CAS  PubMed  Google Scholar 

  85. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009;107(3):987–92. https://doi.org/10.1152/japplphysiol.00076.2009.

    Article  CAS  PubMed  Google Scholar 

  86. Res PT, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, et al. Protein ingestion before sleep improves postexercise overnight recovery. Med Sci Sports Exerc. 2012;44(8):1560–9. https://doi.org/10.1249/MSS.0b013e31824cc363.

    Article  CAS  PubMed  Google Scholar 

  87. Trommelen J, Kouw IWK, Holwerda AM, Snijders T, Halson SL, Rollo I, et al. Pre-sleep dietary protein-derived amino acids are incorporated in myofibrillar protein during post-exercise overnight recovery. Am J Physiol Metab. 2018;314(5):E457–67. https://doi.org/10.1152/ajpendo.00273.2016.

  88. •• Burd NA, Beals JW, Martinez IG, Salvador AF, Skinner SK. Food-First approach to enhance the regulation of post-exercise skeletal muscle protein synthesis and remodeling. Sport Med. 2019;49(S1):59–68. https://doi.org/10.1007/s40279-018-1009-yThis review examines the potential interaction effects of the food matrix associated with dietary protein requirements. The paper highlights positive effects of a whole food approach benefiting skeletal muscle adaptive responses post exercise.

    Article  Google Scholar 

  89. Leser S. The 2013 FAO report on dietary protein quality evaluation in human nutrition: recommendations and implications. Nutr Bull. 2013;38(4):421–8. https://doi.org/10.1111/nbu.12063.

    Article  Google Scholar 

  90. Norton LE, Layman DK. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr. 2006;136(2):533S–7S. https://doi.org/10.1093/jn/136.2.533S.

    Article  CAS  PubMed  Google Scholar 

  91. Garlick PJ. The role of leucine in the regulation of protein metabolism. J Nutr. 2005;135(6 Suppl):1553S–6S. https://doi.org/10.1093/jn/135.6.1553S.

    Article  CAS  PubMed  Google Scholar 

  92. Macnaughton LS, Wardle SL, Witard OC, McGlory C, Hamilton DL, Jeromson S, et al. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol Rep. 2016;4(15):1102–6. https://doi.org/10.14814/phy2.12893.

    Article  CAS  Google Scholar 

  93. Rowlands DS, Nelson AR, Phillips SM, Faulkner JA, Clarke J, Burd NA, et al. Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Med Sci Sports Exerc. 2014;47:547–55.

    Article  Google Scholar 

  94. Phillips SM, Tang JE, Moore DR. The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009;28(4):343–54. https://doi.org/10.1080/07315724.2009.10718096.

    Article  CAS  PubMed  Google Scholar 

  95. •• van Vliet S, Beals JW, Martinez IG, Skinner SK, Burd NA. Achieving optimal post-exercise muscle protein remodeling in physically active adults through whole food consumption. Nutrients. 2018;10(2). https://doi.org/10.3390/nu10020224This review evaluates the efficacy of whole foods rich in nutrients and proteins to stimulate post-exercise muscle protein synthesis. The review highlights that whole foods can improve the overall diet quality and promote changes on muscle protein synthesis.

  96. •• SHM G, JJR C, JMG S, WAH W, Bierau J, Verdijk LB, et al. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50(12):1685–95. https://doi.org/10.1007/s00726-018-2640-5This study compared the essential amino acid concentrations of different plant-based protein isolates with animal-based proteins. The study provides an invaluable database of plant-based protein sources that when combined can provide similar amino acid concentrations as animal-based protein sources.

    Article  CAS  Google Scholar 

  97. Rutherfurd SM, Fanning AC, Miller BJ, Moughan PJ. Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats. J Nutr. 2015;145(2):372–9. https://doi.org/10.3945/jn.114.195438.

    Article  CAS  PubMed  Google Scholar 

  98. Gorissen SH, Horstman AM, Franssen R, Crombag JJ, Langer H, Bierau J, et al. Ingestion of wheat protein increases in vivo muscle protein synthesis rates in healthy older men in a randomized trial. J Nutr. 2016;146(9):1651–9. https://doi.org/10.3945/jn.116.231340.

    Article  CAS  PubMed  Google Scholar 

  99. Food and Agriculture Organization of the United Nations. FAOSTAT. Food balance sheets. Rome, Italy; 2009. Available from: www.worldbank.com

  100. Wardenaar F, Brinkmans N, Ceelen I, Van Rooij B, Mensink M, Witkamp R, et al. Macronutrient intakes in 553 dutch elite and sub-elite endurance, team, and strength athletes: does intake differ between sport disciplines? Nutrients. 2017;9(2). https://doi.org/10.3390/nu9020119.

  101. Garcia-Rovés PM, Fernández S, Rodríguez M, Pérez-Landaluce J, Patterson AM. Eating pattern and nutritional status of international elite flatwater paddlers. Int J Sport Nutr Exerc Metab. 2000;10(2):182–98. https://doi.org/10.1123/ijsnem.10.2.182.

    Article  PubMed  Google Scholar 

  102. Bouvard V, Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599–600. https://doi.org/10.1016/S1470-2045(15)00444-1.

    Article  PubMed  Google Scholar 

  103. Bianco A, Mammina C, Paoli A, Bellafiore M, Battaglia G, Caramazza G, et al. Protein supplementation in strength and conditioning adepts: knowledge, dietary behavior and practice in Palermo, Italy. J Int Soc Sports Nutr. 2011;8(1):25. https://doi.org/10.1186/1550-2783-8-25.

  104. Garthe I, Maughan RJ. Athletes and supplements: prevalence and perspectives. Int J Sport Nutr Exerc Metab. 2018;28(2):126–38. https://doi.org/10.1123/ijsnem.2017-0429.

    Article  PubMed  Google Scholar 

  105. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64. https://doi.org/10.3945/ajcn.112.037556.

    Article  CAS  PubMed  Google Scholar 

  106. Baltazar-Martins G, Brito de Souza D, Aguilar-Navarro M, Muñoz-Guerra J, MDM P, Del Coso J. Prevalence and patterns of dietary supplement use in elite Spanish athletes. J Int Soc Sports Nutr. 2019;16(1):30. https://doi.org/10.1186/s12970-019-0296-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Whitehouse G, Lawlis T. Protein supplements and adolescent athletes: a pilot study investigating the risk knowledge, motivations and prevalence of use. Nutr Diet. 2017;74(5):509–15. https://doi.org/10.1111/1747-0080.12367.

    Article  PubMed  Google Scholar 

  108. Shaw G, Slater G, Burke LM. Changes in the supplementation practices of elite australian swimmers over 11 years. Int J Sport Nutr Exerc Metab. 2016;26(6):565–71. https://doi.org/10.1123/ijsnem.2016-0060.

    Article  PubMed  Google Scholar 

  109. Maughan RJ, Depiesse F, Geyer H, International Association of Athletics Federations. The use of dietary supplements by athletes. J Sports Sci. 2007;25(Suppl 1):S103–13. https://doi.org/10.1080/02640410701607395.

    Article  PubMed  Google Scholar 

  110. Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med. 2018;52(7):439–55. https://doi.org/10.1136/bjsports-2018-099027.

  111. •• Kårlund A, Gómez-Gallego C, Turpeinen AM, Palo-Oja OM, El-Nezami H, Kolehmainen M. Protein supplements and their relation with nutrition, microbiota composition and health: is more protein always better for sportspeople? Nutrients. 2019;11(4):1–19. https://doi.org/10.3390/nu11040829This review examines the effect of high-protein diets and supplements on nutrition, health, and intestinal microbiota in active and sedentary people. The authors caution against the use of high-protein diets and supplement to avoid negative impacts on intestinal health.

    Article  CAS  Google Scholar 

  112. Moreno-Pérez D, Bressa C, Bailén M, Hamed-Bousdar S, Naclerio F, Carmona M, et al. Effect of a protein supplement on the gut microbiota of endurance athletes: a randomized, controlled, double-blind pilot study. Nutrients. 2018;10(3). https://doi.org/10.3390/nu10030337.

  113. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–20. https://doi.org/10.1136/gutjnl-2013-306541.

    Article  CAS  PubMed  Google Scholar 

  114. •• Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr. 2016;13(1):1–21. https://doi.org/10.1186/s12970-016-0155-6This systematic review evaluates the interaction between exercise-induced stress, gut microbiota, and effects on health and athletic performance. The review suggests that improving nutrition to promote gut microbiota diversity and function can help mitigate the impact of stress on the gastrointestinal tract, and this might positively affect health and performance.

    Article  CAS  Google Scholar 

  115. Manore MM, Patton-Lopez MM, Meng Y, Sung WS. Sport nutrition knowledge, behaviors and beliefs of high school soccer players. Nutrients. 2017;9(350):1–14. https://doi.org/10.3390/nu9040350.

    Article  Google Scholar 

  116. Noll M, De Mendonça CR, Pereira L, Rosa DS, Silveira EA. Determinants of eating patterns and nutrient intake among adolescent athletes: a systematic review. 2017;16:1–11. https://doi.org/10.1186/s12937-017-0267-0.

  117. Viner RT, Harris M, Berning JR, Meyer NL. Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density. Int J Sport Nutr Exerc Metab. 2015;25(6):594–602. https://doi.org/10.1123/ijsnem.2015-0073.

    Article  PubMed  Google Scholar 

  118. McKenzie Y, Bowyer R, Leach H, Guila P, Horobin J, O’Sullivan N, et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J Hum Nutr Diet. 2016;29(5):549–75. https://doi.org/10.1111/jhn.12385.

    Article  CAS  PubMed  Google Scholar 

  119. Wilson PB. Nutrition behaviors, perceptions, and beliefs of recent marathon finishers. Phys Sportsmed. 2016;44(3):242–51. https://doi.org/10.1080/00913847.2016.1177477.

    Article  PubMed  Google Scholar 

  120. Anderson AS, Haynie KR, McMillan RP, Osterberg KL, Boutagy NE, Frisard MI, et al. Early skeletal muscle adaptations to short-term high-fat diet in humans before changes in insulin sensitivity. Obesity (Silver Spring). 2015;23(4):720–4. https://doi.org/10.1002/oby.21031.

    Article  CAS  Google Scholar 

  121. Rinninella E, Cintoni M, Raoul P, Lopetuso LR, Scaldaferri F, Pulcini G, et al. Food components and dietary habits: keys for a healthy gut microbiota composition. Nutrients. 2019;11(10). https://doi.org/10.3390/nu11102393.

  122. Hall KD, Bemis T, Brychta R, Chen KY, Courville A, Crayner EJ, et al. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. Cell Metab. 2015;22(3):427–36. https://doi.org/10.1016/j.cmet.2015.07.021.

  123. Rolls BJ, Roe LS, Beach AM, Kris-Etherton PM. Provision of foods differing in energy density affects long-term weight loss. Obes Res. 2005;13(6):1052–60.

    Article  Google Scholar 

  124. Domínguez R, Cuenca E, Maté-Muñoz JL, García-Fernández P, Serra-Paya N, Estevan MCL, et al. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients. 2017;9(1). https://doi.org/10.3390/nu9010043.

  125. Bowtell JL, Sumners DP, Dyer A, Fox P, Mileva KN. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc. 2011;43(8):1544–51. https://doi.org/10.1249/MSS.0b013e31820e5adc.

    Article  CAS  PubMed  Google Scholar 

  126. Ince D, Sönmez G, Ince M. Effects of garlic on aerobic performance. Turk L Med Sci. 1999;30:557–61.

    Google Scholar 

  127. Burd NA, Gorissen SH, van Vliet S, Snijders T, van Loon LJ. Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. Am J Clin Nutr. 2015;102(4):828–36. https://doi.org/10.3945/ajcn.114.103184.

    Article  CAS  PubMed  Google Scholar 

  128. Kanda A, Nakayama K, Sanbongi C, Nagata M, Ikegami S, Itoh H. Effects of whey, caseinate, or milk protein ingestion on muscle protein synthesis after exercise. Nutrients. 2016;8(6):339. https://doi.org/10.3390/nu8060339.

    Article  CAS  PubMed Central  Google Scholar 

  129. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161–8. https://doi.org/10.3945/ajcn.2008.26401.

  130. Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, van Loon LJ. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011;93(5):997–1005. https://doi.org/10.3945/ajcn.110.008102.

    Article  CAS  PubMed  Google Scholar 

  131. Churchward-Venne T, Pinckaers P, Smeets J, Peeters W, Zorenc AH, Schierbeek H, et al. Myofibrillar and mitochondrial protein synthesis rates do not differ in young men following the ingestion of carbohydrate with milk protein, whey, or micellar casein after concurrent resistance- and endurance-type exercise. J Nutr. 2019;149(2):210–20. https://doi.org/10.1093/JN/NXY251.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Babault N, Païzis C, Deley G, Guérin-Deremaux L, Saniez M-H, Lefranc-Millot C, et al. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, placebo-controlled clinical trial vs. whey protein. J Int Soc Sports Nutr. 2015;12(1):3. https://doi.org/10.1186/s12970-014-0064-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD. Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc. 2006;38(4):667–74. https://doi.org/10.1249/01.mss.0000210190.64458.25.

    Article  CAS  PubMed  Google Scholar 

  134. van Vliet S, Shy EL, Abou Sawan S, Beals JW, West DW, Skinner SK, et al. Consumption of whole eggs promotes greater stimulation of postexercise muscle protein synthesis than consumption of isonitrogenous amounts of egg whites in young men. Am J Clin Nutr. 2017;106(6):1401–12. https://doi.org/10.3945/ajcn.117.159855.

    Article  CAS  PubMed  Google Scholar 

  135. Beis LY, Willkomm L, Ross R, Bekele Z, Wolde B, Fudge B, et al. Food and macronutrient intake of elite Ethiopian distance runners. J Int Soc Sports Nutr. 2011;8:7. https://doi.org/10.1186/1550-2783-8-7.

  136. Eliud Kipchoge Breaks Two-Hour Marathon Barrier - The New York Times. Available from: https://www.nytimes.com/2019/10/12/sports/eliud-kipchoge-marathon-record.html (accessed 20 March 2020).

  137. Tigchelaar M, Battisti DS, Naylor RL, Ray DK. Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci U S A. 2018;115(26):6644–9. https://doi.org/10.1073/pnas.1718031115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Taub DR, Miller B, Allen H. Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Chang Biol. 2008;14(3):565–75. https://doi.org/10.1111/j.1365-2486.2007.01511.x.

    Article  Google Scholar 

  139. van Vliet S, Burd NA, van Loon LJ. The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J Nutr. 2015;145(9):1981–91. https://doi.org/10.3945/jn.114.204305.

    Article  PubMed  Google Scholar 

  140. Churchward-Venne TA, Pinckaers PJM, van Loon JJA, van Loon LJC. Consideration of insects as a source of dietary protein for human consumption. Nutr Rev. 2017;75(12):1035–45. https://doi.org/10.1093/nutrit/nux057.

    Article  PubMed  Google Scholar 

  141. • Derbyshire EJ. Flexitarian diets and health: a review of the evidence-based literature. Front Nutr. 2017;3:1–8. https://doi.org/10.3389/fnut.2016.00055This review focuses on the benefits of a flexitarian diet on health, highlighting its positive effects on body weight, metabolic health, and type 2 diabetes prevention. The paper also underlines gender differences and female’s greater willingness to adhere to a flexitarian diet than males. Thus, males are becoming an important target for flexitarian diet interventions.

    Article  CAS  Google Scholar 

  142. The Culinary Institute of America, Harvard School of Public Health. The protein flip. 2016 [accessed 2016 Oct 10]. Available from: http://www.menusofchange.org/images/uploads/pdf/CIA_The_Protein_Flip_C_FINAL_6-17-15.pdf

  143. Nieman DC. Physical fitness and vegetarian diets: is there a relation? Am J Clin Nutr. 1999;70(3 Suppl):570S–5S.

    Article  CAS  Google Scholar 

  144. Grandjean AC. The vegetarian athlete. Phys Sportsmed. 1987;15(5):191–4. https://doi.org/10.1080/00913847.1987.11709361.

    Article  CAS  PubMed  Google Scholar 

  145. Reynlods G. Ask well: can athletes be vegan? New York Times 2014;D6. [accessed 2019 Oct 20]. Available from: https://well.blogs.nytimes.com/2014/11/24/ask-well-can-athletes-be-vegans/?searchResultPosition=1&mtrref=www.nytimes.com&gwh=C7572955632CCEFB44269F3D164FF96A&gwt=pay&assetType=REGIWALL

  146. Nebl J, Schuchardt JP, Ströhle A, Wasserfurth P, Haufe S, Eigendorf J, et al. Micronutrient status of recreational runners with vegetarian or non-vegetarian dietary patterns. Nutrients. 2019a;11(5):1146. https://doi.org/10.3390/nu11051146.

  147. Nebl J, Haufe S, Eigendorf J, Wasserfurth P, Tegtbur U, Hahn A. Exercise capacity of vegan, lacto-ovo-vegetarian and omnivorous recreational runners. J Int Soc Sports Nutr. 2019b;16(1):23. https://doi.org/10.1186/s12970-019-0289-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Craddock JC, Probst YC, Peoples GE. Vegetarian and omnivorous nutrition - comparing physical performance. Int J Sport Nutr Exerc Metab. 2016;26(3):212–20. https://doi.org/10.1123/ijsnem.2015-0231.

    Article  PubMed  Google Scholar 

  149. Melina V, Craig W, Levin S. Position of the academy of nutrition and dietetics: vegetarian diets. J Acad Nutr Diet. 2016;116(12):1970–80. https://doi.org/10.1016/j.jand.2016.09.025.

    Article  PubMed  Google Scholar 

  150. Kniskern MA, Johnston CS. Protein dietary reference intakes may be inadequate for vegetarians if low amounts of animal protein are consumed. Nutrition. 2011;27(6):727–30. https://doi.org/10.1016/j.nut.2010.08.024.

    Article  CAS  PubMed  Google Scholar 

  151. Ciuris C, Lynch HM, Wharton C, Johnston CS. A comparison of dietary protein digestibility, based on DIAAS scoring, in vegetarian and non-vegetarian athletes. Nutrients. 2019;11(12):3016. https://doi.org/10.3390/nu11123016.

    Article  PubMed Central  Google Scholar 

  152. Lynch H, Wharton C, Johnston C. Cardiorespiratory fitness and peak torque differences between vegetarian and omnivore endurance athletes: a cross-sectional study. Nutrients. 2016;8(11):726. https://doi.org/10.3390/nu8110726.

    Article  CAS  PubMed Central  Google Scholar 

  153. Dawson A. These 19 elite athletes are vegan- here’s what made them switch their diet. Business Insider. Available online: https://www.businessinsider.com/vegan-athetes-and-why-they-changed-their-diet-11 (accessed on 27 March 2020).

  154. Kwok CS, Umar S, Myint PK, Mamas MA, Loke YK. Vegetarian diet, Seventh Day Adventists and risk of cardiovascular mortality: a systematic review and meta-analysis. Int J Cardiol. 2014;176(3):680–6. https://doi.org/10.1016/j.ijcard.2014.07.080.

    Article  PubMed  Google Scholar 

  155. Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–9. https://doi.org/10.1080/10408398.2016.1138447.

    Article  PubMed  Google Scholar 

  156. Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L, et al. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med. 2016;13(6):e1002039. https://doi.org/10.2105/AJPH.2016.303046.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sabaté J, Harwatt H, Soret S. Environmental nutrition: a new frontier for public health. Am J Public Health. 2016;106(5):815–21.

    Article  Google Scholar 

  158. Orlich MJ, Fraser GE. Vegetarian diets in the Adventist Health Study 2: a review of initial published findings. Am J Clin Nutr. 2014;100(Suppl 1(1)):353S–8S. https://doi.org/10.3945/ajcn.113.071233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Burkert NT, Muckenhuber J, Großschädl F, Rásky E, Freidl W. Nutrition and health - the association between eating behavior and various health parameters: a matched sample study. PLoS One. 2014;9(2):e88278. https://doi.org/10.1371/journal.pone.0088278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ferdowsian HR, Barnard ND. Effects of plant-based diets on plasma lipids. Am J Cardiol. 2009;104(7):947–56. https://doi.org/10.1016/j.amjcard.2009.05.032.

    Article  CAS  PubMed  Google Scholar 

  161. Szeto YT, Kwok TCY, Benzie IFF. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition. 2004;20(10):863–6. https://doi.org/10.1016/j.nut.2004.06.006.

    Article  CAS  PubMed  Google Scholar 

  162. Wang F, Zheng J, Yang B, Jiang J, Fu Y, Li D. Effects of vegetarian diets on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4(10):e002408. https://doi.org/10.1161/JAHA.115.002408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. •• Barnard N, Goldman D, Loomis J, Kahleova H, Levin S, Neabore S, et al. Plant-based diets for cardiovascular safety and performance in endurance sports. Nutrients. 2019;11(1):130. https://doi.org/10.3390/nu11010130This review explores the health and performance benefits of plant-based diets on endurance athletes. The review highlights possible positive effects, such as weight control, higher antioxidants due to fruit and vegetable content, higher glycogen stores due to high carbohydrate intakes, and improved cardiovascular and metabolic parameters.

    Article  CAS  PubMed Central  Google Scholar 

  164. Cialdella-Kam L, Kulpins D, Manore M. Vegetarian, gluten-free, and energy restricted diets in female athletes. Sports. 2016;4(4):50. https://doi.org/10.3390/sports4040050.

    Article  PubMed Central  Google Scholar 

  165. Mujika I. Case study: long-term low-carbohydrate, high-fat diet impairs performance and subjective well-being in a world-class vegetarian long-distance triathlete. Int J Sport Nutr Exerc Metab. 2019;29(3):339–44. https://doi.org/10.1123/IJSNEM.2018-0124.

    Article  CAS  PubMed  Google Scholar 

  166. Wirnitzer K, Boldt P, Lechleitner C, Wirnitzer G, Leitzmann C, Rosemann T, et al. Health status of female and male vegetarian and vegan endurance runners compared to omnivores—results from the NURMI study (step 2). Nutrients. 2018;11(1):29. https://doi.org/10.3390/nu11010029.

  167. Boldt P, Knechtle B, Nikolaidis P, Lechleitner C, Wirnitzer G, Leitzmann C, et al. Quality of life of female and male vegetarian and vegan endurance runners compared to omnivores – results from the NURMI study (step 2). J Int Soc Sports Nutr. 2018;15(1):33. https://doi.org/10.1186/s12970-018-0237-8.

  168. Walsh NP. Nutrition and athlete immune health: new perspectives on an old paradigm. Sport Med. 2019;49(S2):153–68. https://doi.org/10.1007/s40279-019-01160-3.

    Article  Google Scholar 

  169. Rodriguez NR, DiMarco NM, Langley S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Am Diet Assoc. 2009;109(3):509–27.

    Article  Google Scholar 

  170. Gilani GS, Cockell AK, Sepehr E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J AOAC Int. 2005;88(3):967–87. https://doi.org/10.1093/jaoac/88.3.967.

    Article  CAS  PubMed  Google Scholar 

  171. Ekpa O, Palacios-Rojas N, Kruseman G, Fogliano V, Linnemann AR. Sub-Saharan African maize-based foods: technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. Glob Food Sec. 2018;17:48–56. https://doi.org/10.1016/J.GFS.2018.03.007.

    Article  Google Scholar 

  172. Gobbetti M, De Angelis M, Di Cagno R, Calasso M, Archetti G, Rizzello CG. Novel insights on the functional/nutritional features of the sourdough fermentation. Int J Food Microbiol. 2019;302(5):103–13. https://doi.org/10.1016/j.ijfoodmicro.2018.05.018.

    Article  CAS  PubMed  Google Scholar 

  173. Ingram J, Ajates R, Arnall A, Blake L, Borrelli R, Collier R, et al. A future workforce of food-system analysts. Nat Food. 2020;1(1):9–10. https://doi.org/10.1038/s43016-019-0003-3This concept paper illustrates the shift needed in knowledge, understanding, skills, and values when working with the current food system. Systems thinking and multi-disciplinary actions are needed also in sports nutrition.

    Article  Google Scholar 

  174. Meyer N. Transforming food journeys on a college campus: discourse from the frontlines of food and farming. J Food Nutr Sci. 2019;1(3):128–38. https://doi.org/10.1057/jfns000017.

    Article  Google Scholar 

  175. • Wegener J. Equipping future generations of registered dietitian nutritionists and public health nutritionists: a commentary on education and training needs to promote sustainable food systems and practices in the 21st century. J Acad Nutr Diet. 2018;118(3):393–8. https://doi.org/10.1016/j.jand.2017.10.024This commentary paper illustrates the current gaps, challenges, and opportunities for nutrition professionals when integrating sustainable food systems into professional practice.

    Article  PubMed  Google Scholar 

  176. Truman E, Lane D, Elliott C. Defining food literacy: a scoping review. Appetite. 2017;116:365–71. https://doi.org/10.1016/j.appet.2017.05.007.

    Article  PubMed  Google Scholar 

  177. Vidgen HA, Gallegos D. Defining food literacy and its components. Appetite. 2014;76:50–9. https://doi.org/10.1016/j.appet.2014.01.010.

    Article  PubMed  Google Scholar 

  178. Rowat AC, Soh M, Malan H, Jensen L, Schmidt L, Slusser W. Promoting an interdisciplinary food literacy framework to cultivate critical citizenship. J Am Coll Heal. 2019:1–4. https://doi.org/10.1080/07448481.2019.1679149.

  179. International Olympic Committee. Olympic Movement’s Agenda 21. 1999. Available from: http://www.olympic.org (accessed October 9 2019).

  180. Food vision for the London 2012 Olympic Games and Paralympic Games. London; 2009. Available from: http://learninglegacy.independent.gov.uk/documents/pdfs/sustainability/cp-london-2012-food-vision.pdf (accessed November 20 2018).

  181. Rio Food Vision Diagnostic analysis for the supply of healthy and sustainable food for the 2016 Rio Olympic and Paralympic Games. Rio de Janeiro; 2014. Available from: www.riofoodvision.org (accessed September 17 2019).

  182. Pelly F, Parker SS. Food provision at the Rio 2016 Olympic Games: expert review and future recommendations. Int J Sport Nutr Exerc Metab. 2019:1–6. https://doi.org/10.1123/ijsnem.2018-0175.

  183. Green Sports Alliance. Available from: http://greensportsalliance.org/ (accessed February 6 2020).

  184. Sports for Climate Action | UNFCCC. Available from: https://unfccc.int/climate-action/sectoral-engagement/sports-for-climate-action (accessed April 1 2020).

  185. Mervosh S. Seaweed pods, anyone? Marathons get creative to stop littering the streets. The New York Times. 2019; Available from: https://www.nytimes.com/2019/04/30/sports/marathons-plastic-water-bottles.html (accessed March 27 2020).

  186. Resource management report. Available from: https://tokyo2020.org/en/games/sustainability/asset (accessed April 1 2020).

  187. International Ski Mountaineering Federation. ISMF sustainability handbook. Available online: www.ismf-ski.org (accessed on 1 April 2020).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/license/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original authors and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanna L Meyer.

Ethics declarations

Conflict of Interest

Nanna L. Meyer, Alba Reguant-Closa, and Thomas Nemecek declare no conflict of interest.

Human and Animal Rights and Informed Consent

All cited studies by the authors were approved by institutional review boards of their respective institutions.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sports Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, N.L., Reguant-Closa, A. & Nemecek, T. Sustainable Diets for Athletes. Curr Nutr Rep 9, 147–162 (2020). https://doi.org/10.1007/s13668-020-00318-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-020-00318-0

Keywords

Navigation