Skip to main content
Log in

NiAl–Cr–Mo–W High-Entropy Systems Microstructural Verification, Solidification Considerations and Sliding Wear Response

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Three new high-entropy alloys of the Ni–Al–Cr–Mo–W system were produced by vacuum arc melting and assessed concerning their microstructure and sliding wear resistance. The NiAl content was kept constant at 60 at.%, and three alloys, namely NiAl–25Cr–7.5Mo–7.5W, NiAl–20Cr–10Mo–10W and NiAl–15Cr–12.5Mo–12.5W, were investigated by changing the relative ratios between Cr–Mo–W. All microstructures were found to consist of primary phases, eutectic microconstituent, a small amount of Al–Cr-based intermetallic phases and precipitated phases after spinodal decomposition. Adiabatic conditions, originated from the presence of tungsten with the highest melting point and its leading role in the initiation of solidification, were proved to affect the extent and morphology of features like the eutectic microconstituent. In particular, higher concentrations of W–Mo caused more powerful adiabatic conditions and, thus, thicker eutectic growing radially in a partitioning mode. The sliding wear response of the produced system seems to follow the classical sliding wear laws of Archard. This behaviour is further supported by multiple factors, such as the nature of the oxide phases being formed upon sliding and the integrity and rigidity of the interface between the primary and secondary phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. D.B. Miracle, The physical and mechanical properties of NiAl. Acta Mater. 41, 649 (1993)

    Article  CAS  Google Scholar 

  2. P. Ferrandini, W.W. Batista, R. Caram, Influence of growth rate on the microstructure and mechanical behaviour of a nial-mo eutectic alloy. J. Alloys Compd. 381, 91–98 (2004)

    Article  CAS  Google Scholar 

  3. J.L. Walter, H.E. Cline, The effect of solidification rate on structure and high-temperature strength of the Eutectic NiAl-Cr. Metall. Trans. 1, 1221–1229 (1970)

    Article  CAS  Google Scholar 

  4. S. Bogner, L. Hu, S. Hollad, W. Hu, G. Gottstein, A. Bührig-Polaczek, Microstructure of a Eutectic NiAl-Mo alloy directionally solidified using an industrial scale and a laboratory scale bridgman furnace. Int. J. Mater. Res. 103, 17–23 (2012)

    Article  CAS  Google Scholar 

  5. L. Hu, W. Hu, G. Gottstein, S. Bogner, S. Hollad, A. Bührig-Polaczek, Investigation into microstructure and mechanical properties of NiAl-Mo composites produced by directional solidification. Mater. Sci. Eng. A. 539, 211–222 (2012)

    Article  CAS  Google Scholar 

  6. D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, J.D. Whittenberger, Directional solidification and mechanical properties of NiAl single bond NiAlTa alloys. Intermetallics. 3, 141–152 (1995)

    Article  CAS  Google Scholar 

  7. D. Shechtman, W.J. Boettinger, T.Z. Kattamis, F.S. Biancaniello, Microstructure and phase solubility extension in rapidly solidified NiAl-Cr quasibinary eutectic. Acta Mater. 32(5), 749–756 (1984)

    Article  CAS  Google Scholar 

  8. R.I. Barabash, W. Liu, J.Z. Tischler, H. Bei, J.D. Budai, Phase-specific elastic/plastic interface interactions in layered NiAl–Cr(Mo) structures. Acta Mater. 60, 3279 (2012)

    Article  CAS  Google Scholar 

  9. S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, J.W. Yeh, Microstructure and properties of age hardenable AlxCrFe1.5MnNi0.5 alloys. Mater. Sci. Eng. A. 527(21–22), 5818–5825 (2010)

    Article  Google Scholar 

  10. C.Y. Hsu, C.C. Juan, T.S. Sheu, S.K. Chen, J.W. Yeh, Effect of aluminum content on microstructure and mechanical properties of AlxCoCrFeMo0.5Ni high-entropy alloys. J. Met. 65, 1840–1847 (2013)

    CAS  Google Scholar 

  11. C.Y. Hsu, T.S. Sheu, J.W. Yeh, S.K. Chen, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear. 268, 653–659 (2010)

    Article  CAS  Google Scholar 

  12. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear. 261(5–6), 513–519 (2006)

    Article  CAS  Google Scholar 

  13. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308–6317 (2011)

    Article  CAS  Google Scholar 

  14. Q. Ye, B. Yang, J. Zhao, G. Yang, Z. Gong, L. Zhang, AlCoCrFeNi1.9(Mo, Nb, Hf, C) high entropy alloy strengthened by a novel long-period stacking ordered (LPSO) structure and (Nb, M)C (M = Mo, Hf, Cr). Mater. Lett. 304, 130646 (2021). https://doi.org/10.1016/j.matlet.2021.130646

    Article  CAS  Google Scholar 

  15. P. L. J. Conway*, D. Golay, L. Bassman, M. Ferry, K. J. Laws, Thermodynamic modelling to predict phase stability in BCC + B2 Al–Ti–Co–Ni–Fe–Cr high entropy alloys, Mater. Chem. Phys. (2022) 125395, https://doi.org/10.1016/j.matchemphys.2021.125395

  16. Z. Xu, P. Zhang*, W. Wang*, Q. Shi, H. Yang, D. Wang, Y. Hong, L. Wang, C. Guo, S. Lin, M. Dai, AlCoCrNiMo high-entropy alloy as diffusion barrier between NiAlHf coating and Ni-based single crystal superalloy, Surface Coat. Technol. 414 (2021) https://doi.org/10.1016/j.surfcoat.2021.127101

  17. D. Liu, P. Yu, G. Li,*, P.K. Liaw, R. Liu, High-temperature high-entropy alloys AlxCo15Cr15Ni70-x based on the Al-Ni binary system, Mater. Sci. Eng. A 724 (2018) 283–288, https://doi.org/10.1016/j.msea.2018.03.058

  18. E.S. Panina, N. Yu Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, M.V. Mishunin, N. D. Stepanov*, Structures and mechanical properties of Ti-Nb-Cr-V-Ni-Al refractory high entropy alloys, Mater. Sci. Eng. A 786 (2020) 139409, https://doi.org/10.1016/j.msea.2020.139409

  19. J. Joseph*, M. Senadeera, Q. Chao, K.F. Shamlaye, S. Rana, S. Gupta, S. Venkatesh, P. Hodgson, M. Barnett, D. Fabijanic, Computational design of thermally stable and precipitation-hardened Al-Co-Cr-Fe-Ni-Ti high entropy alloys, J. Alloys Compd. 888 (2021) 161496, https://doi.org/10.1016/j.jallcom.2021.161496

  20. M. Ostrowska, P. Riani, B. Bocklund, Z.-K. Liu, G. Cacciamani, Thermodynamic modelling of the Al-Co-Cr-Fe-Ni, High Entropy Alloys supported by key experiments, J. Alloys Compound., in press, https://doi.org/10.1016/j.jallcom.2021.162722

  21. N.D. Stepanov∗, D.G. Shaysultanov, M.A. Tikhonovsky, S.V. Zherebtsov, Structure and high temperature mechanical properties of novel nonequiatomic Fe-(Co, Mn)-Cr-Ni-Al-(Ti) high entropy alloys, Intermetallics 102 (2018) 140–151, https://doi.org/10.1016/j.intermet.2018.09.010

  22. Z. Shang*, Q. Zhang, J. Shen, H. Bai, X. Dong, W. Bai, L. Zhong, G. Liu, Y. Xu, Effects of Nb/Ti additions and heat treatment on the microstructure evolution and hardness of as-cast and directionally solidified NiAleCr(Mo) alloy, J. Mater. Res. Technol., 2021, 10, 905-915, https://doi.org/10.1016/j.jmrt.2020.12.089

  23. Z. Fu*, R. Koc, TiNiFeCrCoAl, high-entropy alloys as novel metallic binders for TiB2-TiC based composites, Mater. Sci. Eng. A 735 (2018) 302–309, 10.1016/j.msea.2018.08.058

  24. C.-S. Chen*, C.-C. Yang, H.-Y. Chai, J.-W. Yeh, J. L. H. Chau, Novel cermet material ofWC/multi-element alloy, Int. J. Refract. Metals Hard Mater. 43 (2014) 200–204, https://doi.org/10.1016/j.ijrmhm.2013.11.005

  25. B. L. Ezquerra, T.S. Biurrun, L.L. Cabezas, J.M. Sánchez Moreno*, F. I. Lopez, R. M. Pampliega, Sintering of WC hardmetals with Ni-Co-Cr-Ti-Al multi-component alloys, Int. J. Refract. Metals Hard Mater. 77 (2018) 44–53, https://doi.org/10.1016/j.ijrmhm.2018.07.007

  26. B. Tang, D.A. Cogswell, G. Xu, S. Milenkovic, Y. Cui, Formation mechanism of eutectic microstructure in NiAl–Cr composites. Phys. Chem. Chem Phys. 18(29), 19773–19786 (2016)

    Article  CAS  Google Scholar 

  27. D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, J.D. Whittenberger, Processing and mechanical properties of in-situ composites from the NiAl-Cr and the NiAl-(Cr, Mo) eutectic systems. Intermetallics. 3(2), 99–13 (1995). https://doi.org/10.1016/0966-9795(95)92674-O

    Article  CAS  Google Scholar 

  28. H.E. Cline, J.L. Walter, The effect of alloy additions on the rodplate transition in the eutectic NiAl–Cr. Metall Trans. 1(10), 2907–2917 (1970)

    Article  CAS  Google Scholar 

  29. C. Mathiou, K. Giorspyros, E. Georgatis, A.E. Karantzalis, Microstructural verification of the theoretically predicted morphologies of the NiAl-Cr pseudo-binary alloy systems and NiAl-Cr eutectic structure modification by Mo addition. SN Appl. Sci.. 1, 1292 (2019). https://doi.org/10.1007/s42452-019-1338-y

    Article  CAS  Google Scholar 

  30. C. Mathiou, K. Girospyros, E. Georgatis, A. Poulia, A.E. Karantzalis, NiAl-Cr-Mo medium entropy alloys: microstructural verification, solidification considerations, and sliding wear response. Materials. 13(16), 3445 (2020). https://doi.org/10.3390/ma13163445

    Article  CAS  Google Scholar 

  31. Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, B. Li, Design of non-equiatomic medium-entropy alloys. Sci. Rep. 8, 1236 (2018). https://doi.org/10.1038/S41598-018-19449-0

    Article  Google Scholar 

  32. K. Bochenek, M. Basista, Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog. Aerosp. Sci. 79, 136–146 (2015). https://doi.org/10.1016/j.paerosci.2015.09.003

    Article  Google Scholar 

  33. H. Bei, E.P. George, Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy. Acta Mater. 53(1), 69–77 (2005). https://doi.org/10.1016/j.actamat.2004.09.003

    Article  CAS  Google Scholar 

  34. J.F. Zhang, J. Shen, Z. Shang, Z.R. Feng, L.S. Wang, H.Z. Fu, Microstructure and room temperature fracture toughness of directionally solidified NiAl-Mo eutectic in situ composites. Intermetallics. 21(1), 18–25 (2012). https://doi.org/10.1016/j.intermet.2011.10.002

    Article  CAS  Google Scholar 

  35. X.F. Chen, D.R. Johnson, R.D. Noebe, B.F. Oliver, Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy. J. Mater. Res. 10(5), 1159–1170 (1995). https://doi.org/10.1557/JMR.1995.1159

    Article  CAS  Google Scholar 

  36. J.D. Whittenberger, S.V. Raj, I.E. Locci, J.A. Salem, Effect of growth rate on elevated temperature plastic flow and room temperature fracture toughness of directionally solidified NiAl-31Cr-3Mo. Intermetallics. 7(10), 1159–1168 (1999). https://doi.org/10.1016/S0966-9795(99)00023-0

    Article  CAS  Google Scholar 

  37. S.V. Raj, I.E. Locci, Microstructural characterization of a directionally-solidified Ni-33 (at.%) Al-31Cr-3Mo eutectic alloy as a function of withdrawal rate. Intermetallics. 9(3), 217–227 (2001). https://doi.org/10.1016/S0966-9795(00)00128-X

    Article  CAS  Google Scholar 

  38. S.V. Raj, I.E. Locci, J.A. Salem, R.J. Pawlik, Effect of directionally solidified microstructures on the room-temperature fracture-toughness properties of Ni- 33(at.%)Al-33Cr-1Mo and Ni-33(at.%)Al-31Cr-3Mo eutectic alloys grown at different solidification rates. Metall. Mater. Trans. A. 33(3), 597–612 (2002). https://doi.org/10.1007/s11661-002-0122-5

    Article  Google Scholar 

  39. Z. Shang, J. Shen, L. Wang, Y. Du, Y. Xiong, H. Fu, Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl-Cr(Mo) eutectic alloy. Intermetallics. 57(1), 25–33 (2015). https://doi.org/10.1016/j.intermet.2014.09.012

    Article  CAS  Google Scholar 

  40. J. Peng, P. Franke, H.J. Seifert, Experimental investigation and CALPHAD assessment of the eutectic trough in the system NiAl-Cr-Mo. J. Phase Equilib. Diffus. 37(5), 592–600 (2016). https://doi.org/10.1007/s11669-016-0490-y

    Article  CAS  Google Scholar 

  41. Demirtas, H., Gungor, A. Effect of alloying elements on the microstructure and mechanical properties of NiAl–Cr(Mo) eutectic alloy. Int. Sci. J. Mater. Sci. Non-Equilib Phase Transform. 2015, 1(2), 25–29.

  42. Z. Shang, J. Shen, J. Zhang, L. Wang, L. Wang, H. Fu, Effect of microstructures on the room temperature fracture toughness of NiAl–32Cr–6Mo hypereutectic alloy directionally solidified at different withdrawal rates. Mater. Sci. Eng. A. 6(11), 306–312 (2014)

    Article  Google Scholar 

  43. L. Wang, J. Shen, Y. Zhang, H. Xu, H. Fu, Microstructure and mechanical properties of NiAl-based hypereutectic alloy obtained by liquid metal cooling and zone melted liquid metal cooling directional solidification techniques. J. Mater. Res. 31(5), 646–654 (2016). https://doi.org/10.1557/jmr.2016.61

    Article  CAS  Google Scholar 

  44. H. Naser-Zoshki, Ali-Reza Kiani-Rashid *, Jalil Vahdati-Khaki, Design of a low density refractory high entropy alloy in non-equiatomic W-Mo–Cr–Ti–Al system. Vacuum. 181, 109614 (2020). https://doi.org/10.1016/j.vacuum.2020.109614

    Article  CAS  Google Scholar 

  45. B.X. Cao, T. Yang, L. Fan, J.H. Luan, Z.B. Jiao, C.T. Liu*, Refractory alloying additions on the thermal stability and mechanical properties of high-entropy alloys, Mater. Sci. Eng. A 797 (2020) 140020, https://doi.org/10.1016/j.msea.2020.140020

  46. J. Guo, Z. Wang, L. Sheng, L. Zhou, C. Yuan, Z. Chen, L. Song, Wear properties of NiAl based materials. Pro. Nat. Sci. Mater. 22(5), 414–425 (2012). https://doi.org/10.1016/j.pnsc.2012.10.008

    Article  Google Scholar 

  47. http://www.factsage.cn/fact/phase_diagram.php?file=Mo-W.jpg&dir=SGTE

  48. Q. Mei, J. Li, Dependence of liquid supercooling on liquid overheating levels of Al small particles. Materials. 9(7), 1–8 (2016). https://doi.org/10.3390/ma9010007

    Article  Google Scholar 

  49. B. Yang, J.H. Perepezko, J.W.P. Schmelzer, Y. Gao, C. Schick, Dependence of crystal nucleation on prior liquid overheating by differential fast scanning calorimeter. J. Chem. Phys. (2014). https://doi.org/10.1063/1.4868002

    Article  Google Scholar 

  50. http://www.factsage.cn/fact/documentation/binary/Cr-W.jpg

  51. http://www.factsage.cn/fact/phase_diagram.php?file=Cr-Mo.jpg&dir=SGTE

  52. http://www.factsage.cn/fact/phase_diagram.php?file=Al-Cr.jpg&dir=FSlite

  53. Prestipino, S. A maximum-entropy approach to the adiabatic freezing of a supercooled liquid, Retrieved at 02/04/2020 from: https://arxiv.org/pdf/1304.7593.pdf.

  54. http://www.factsage.cn/fact/documentation/binary/Mo-Ni.jpg

  55. J.F. Archard, Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953). https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  56. J. Glascott, F.H. Stott, G.C. Wood, The effectiveness of oxides in reducing sliding wear of alloys. Oxid. Met. 24, 99–114 (1985). https://doi.org/10.1007/BF00664227

    Article  CAS  Google Scholar 

  57. F.H. Stott, G.C. Wood, The influence of oxides on the friction and wear of alloys. Tribol. Int. 11(4), 211–218 (1978). https://doi.org/10.1016/0301-679X(78)90178-0

    Article  CAS  Google Scholar 

  58. L. Moravcikova-Gouvea et al., High-strength Al0.2Co1.5CrFeNi1.5Ti high-entropy alloy peoduced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Mater. Charact. 159, 110046 (2020). https://doi.org/10.1016/j.matchar.2019.110046

    Article  CAS  Google Scholar 

Download references

Funding

This research is co-financed by Greece and the European Union (European Social Fund—ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Karantzalis.

Ethics declarations

Conflict of interest

The authors would like to declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathiou, C., Giorspyros, K., Georgatis, E. et al. NiAl–Cr–Mo–W High-Entropy Systems Microstructural Verification, Solidification Considerations and Sliding Wear Response. Metallogr. Microstruct. Anal. 11, 7–20 (2022). https://doi.org/10.1007/s13632-021-00816-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00816-9

Keywords

Navigation