Skip to main content
Log in

Shape Transformation of Bimetallic Au–Pd Core–Shell Nanocubes to Multilayered Au–Pd–Au Core–Shell Hexagonal Platelets

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusual intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. The formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.R. Buck, J.F. Bondi, R.E. Schaak, A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 4, 37 (2012)

    Article  Google Scholar 

  2. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  3. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60 (2009)

    Article  Google Scholar 

  4. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A. Requicha, H.A. Atwater, Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501 (2001)

    Article  Google Scholar 

  5. S.E. Skrabalak, L. Au, X. Lu, X. Li, Y. Xia, Gold nanocages for cancer detection and treatment. Fut. Med. 2, 657–668 (2007)

    Google Scholar 

  6. E. Pérez-Tijerina, M.G. Pinilla, S. Mejia-Rosales, U. Ortiz-Méndez, A. Torres, M. José-Yacamán, Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation. Faraday Disc. 138, 353 (2008)

    Article  Google Scholar 

  7. C. Kiely, Electron microscopy: new views of catalysts. Nat. Mater. 9, 296 (2010)

    Article  Google Scholar 

  8. J. Xu, A.R. Wilson, A.R. Rathmell, J. Howe, M. Chi, B.J. Wiley, Synthesis and catalytic properties of Au–Pd nanoflowers. ACS Nano 5, 6119 (2011)

    Article  Google Scholar 

  9. J.W. Hong, D. Kim, Y.W. Lee, M. Kim, S.W. Kang, S.W. Han, Atomic-distribution-dependent electrocatalytic activity of Au–Pd bimetallic nanocrystals. Angew. Chem. 123, 9038 (2011)

    Article  Google Scholar 

  10. C.-W. Yang, K. Chanda, P.-H. Lin, Y.-N. Wang, C.-W. Liao, M.H. Huang, Fabrication of Au–Pd core–shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. J. Am. Chem. Soc. 133, 19993 (2011)

    Article  Google Scholar 

  11. C.-L. Lu, K.S. Prasad, H.-L. Wu, J.-A.A. Ho, M.H. Huang, Au nanocube-directed fabrication of Au–Pd core–shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J. Am. Chem. Soc. 132, 14546 (2010)

    Article  Google Scholar 

  12. L. Zhang, J. Zhang, Q. Kuang, S. Xie, Z. Jiang, Z. Xie, L. Zheng, Cu2+-assisted synthesis of hexoctahedral Au–Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 133, 17114 (2011)

    Article  Google Scholar 

  13. D. Ferrer, A. Torres-Castro, X. Gao, S. Sepulveda-Guzman, U. Ortiz-Mendez, M. Jose-Yacaman, Three-layer core/shell structure in Au-Pd bimetallic nanoparticles. Nano Lett. 7, 1701 (2007)

    Article  Google Scholar 

  14. R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  15. B. Sacca, C.M. Niemeyer, Functionalization of DNA nanostructures with proteins. Chem. Soc. Rev. 40, 5910 (2011)

    Article  Google Scholar 

  16. A. Stadler, C. Chi, D. van der Lelie, O. Gang, DNA-incorporating nanomaterials in biotechnological applications. Nanomedicine 5, 319 (2010)

    Article  Google Scholar 

  17. A. Kumar, J.-H. Hwang, S. Kumar, J.-M. Nam, Tuning and assembling metal nanostructures with DNA. Chem. Comm. 49, 2597 (2013)

    Article  Google Scholar 

  18. L.-L. Li, P. Wu, K. Hwang, Y. Lu, An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 135, 2411 (2013)

    Article  Google Scholar 

  19. M. Mertig, L. Colombi-Ciacchi, R. Seidel, W. Pompe, A. De Vita, DNA as a selective metallization template. Nano Lett. 2, 841 (2002)

    Article  Google Scholar 

  20. S. Helmi, C. Ziegler, D.J. Kauert, R. Seidel, Shape-controlled synthesis of gold nanostructures using DNA origami molds. Nano Lett. 14, 6693 (2014)

    Article  Google Scholar 

  21. G. Tikhomirov, S. Hoogland, P. Lee, A. Fischer, E.H. Sargent, S.O. Kelley, DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat. Nanotechnol. 6, 485 (2011)

    Article  Google Scholar 

  22. Z. Wang, J. Zhang, J.M. Ekman, P.J. Kenis, Y. Lu, DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett. 10, 1886 (2010)

    Article  Google Scholar 

  23. L.H. Tan, H. Xing, Y. Lu, DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc. Chem. Res. 47, 1881 (2014)

    Article  Google Scholar 

  24. Z. Wang, L. Tang, L.H. Tan, J. Li, Y. Lu, Discovery of the DNA “genetic code” for abiological gold nanoparticle morphologies. Angew. Chem. Int. Ed. 51, 9078 (2012)

    Article  Google Scholar 

  25. N. Bhattarai, G. Casillas, A. Ponce, M. Jose-Yacaman, Strain-release mechanisms in bimetallic core–shell nanoparticles as revealed by Cs-corrected STEM. Surf. Sci. 609, 161 (2013)

    Article  Google Scholar 

  26. N. Bhattarai, G. Casillas, S. Khanal, J.J.V. Salazar, A. Ponce, M. Jose-Yacaman, Origin and shape evolution of core–shell nanoparticles in Au–Pd: from few atoms to high Miller index facets. J. Nanopart. Res. 15, 1 (2013)

    Article  Google Scholar 

  27. Y. Ding, F. Fan, Z. Tian, Z.L. Wang, Atomic structure of Au–Pd bimetallic alloyed nanoparticles. J. Am. Chem. Soc. 132, 12480 (2010)

    Article  Google Scholar 

  28. M.H. Huang, P.H. Lin, Shape-controlled synthesis of polyhedral nanocrystals and their facet-dependent properties. Adv. Funct. Mater. 22, 14 (2012)

    Article  Google Scholar 

  29. J. Zhang, Y. Tang, K. Lee, M. Ouyang, Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327, 1634 (2010)

    Article  Google Scholar 

  30. P. Reiss, M. Protiere, L. Li, Core/shell semiconductor nanocrystals. Small 5, 154 (2009)

    Article  Google Scholar 

  31. M. Tsuji, K. Ikedo, M. Matsunaga, K. Uto, Epitaxial growth of Au@ Pd core–shell nanocrystals prepared using a PVP-assisted polyol reduction method. Cryst. Eng. Commun. 14, 3411 (2012)

    Article  Google Scholar 

  32. J. Rodríguez-Fernández, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B 109, 14257 (2005)

    Article  Google Scholar 

  33. J. Liu, J. Liu, L. Yang, X. Chen, M. Zhang, F. Meng, T. Luo, M. Li, Nanomaterial-assisted signal enhancement of hybridization for DNA biosensors: a review. Sensors 9, 7343 (2009)

    Article  Google Scholar 

  34. H. Kimura-Suda, D.Y. Petrovykh, M.J. Tarlov, L.J. Whitman, Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 125, 9014 (2003)

    Article  Google Scholar 

  35. T. Song, L. Tang, L.H. Tan, X. Wang, N.S.R. Satyavolu, H. Xing, Z. Wang, J. Li, H. Liang, Y. Lu, DNA-encoded tuning of geometric and plasmonic properties of nanoparticles growing from gold nanorod seeds. Angew. Chem. Int. Ed. 54, 8114 (2015)

    Article  Google Scholar 

  36. R.M. Pallares, S.L. Kong, T.H. Ru, N.T. Thanh, Y. Lu, X. Su, A plasmonic nanosensor with inverse sensitivity for circulating cell-free DNA quantification. Chem. Commun. 51, 14524 (2015)

    Article  Google Scholar 

  37. J. Li, Y. Zheng, J. Zeng, Y. Xia, Controlling the size and morphology of Au@ Pd core-shell nanocrystals by manipulating the kinetics of seeded growth. Chemistry A 18, 8150 (2012)

    Google Scholar 

  38. F. Wang, L.D. Sun, W. Feng, H. Chen, M.H. Yeung, J. Wang, C.H. Yan, Heteroepitaxial growth of core–shell and core–multishell nanocrystals composed of palladium and gold. Small 6, 2566 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

T.P. acknowledges support from the Department of Energy Office of Science Early Career Research Award, Biomolecular Materials Program. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The authors are very grateful to the laboratory of Prof. Yi Lu from University of Illinois, Urbana, for providing the T30 DNA molecules used for this synthesis and for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabraj Bhattarai.

Additional information

This article is an invited paper selected from presentations at the 2014 Microscopy & Microanalysis Conference, held August 3–7, 2014, in Hartford, Connecticut, USA, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattarai, N., Prozorov, T. Shape Transformation of Bimetallic Au–Pd Core–Shell Nanocubes to Multilayered Au–Pd–Au Core–Shell Hexagonal Platelets. Metallogr. Microstruct. Anal. 4, 481–487 (2015). https://doi.org/10.1007/s13632-015-0246-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0246-9

Keywords

Navigation