Skip to main content

Advertisement

Log in

Effect of Deep Cryogenic Treatment on the Microstructure and Mechanical Properties of HY-TUF Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This paper analyzes how a deep cryogenic process changes the microstructure and mechanical properties of a medium-carbon low-alloy steel. The light microscopy, microhardness testing, and transmission electron microscopy reveal that η-carbide and martensite are constituent phases of deep cryogenic treated (DCT) steel, while the microstructure of conventional heat-treated (CHT) steel consists of cementite, martensite, and retained austenite. Transmission electron microscopy also shows that the particles of η-carbide have the shape of ultra-fine globules in DCT martensite. The η-carbides grow in a Hirotsu and Nagakura orientation relationship to the martensitic matrix that enables highly coherent interphase boundaries. The results of the mechanical tests, including tensile and Charpy impact tests, show that the deep cryogenic process can improve toughness in terms of elongation (~12.81%), tensile fracture energy (~266 MPa), and the ductile–brittle transition temperature (~−17.2 °C). The results of fractography are also consistent with the improvement in toughness. It is also found that the strength and macrohardness values are increased. Unlike CHT steel, discontinuous yielding is observed in DCT steel. Moreover, there is no change in Young’s modulus due to the deep cryogenic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.B. Scott, Cryogenic Engineering, vol. 282 (Van Nostrand, Princeton, 1959)

    Google Scholar 

  2. W. Klopp, Aerospace Structural Metals Handbook, 39th edn. (Purdue Research Foundation, West Lafayette, 1992), pp. 1–12

    Google Scholar 

  3. A. Bensely, A. Prabhakaran, D. Mohan Lal, G. Nagarajan, Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics 45, 747–754 (2005)

    Article  Google Scholar 

  4. D. Candane, N. Alagumurthi, K. Palaniradja, Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS. Int. J. Mater. Sci. Appl. 2(2), 56–65 (2013)

    Google Scholar 

  5. V. Firouzdor, E. Nejati, F. Khomamizadeh, Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. J. Mater. Process. Technol. 206, 467–472 (2008)

    Article  Google Scholar 

  6. S. Li, L. Deng, X. Wu, Y.A. Min, H. Wang, Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel. Cryogenics 50, 754–758 (2010)

    Article  Google Scholar 

  7. F. Meng, K. Tagashira, R. Azuma, H. Sohma, Role of eta-carbide precipitations in the wear resistance improvements of Fe-12Cr-Mo-V-1.4C tool steel by cryogenic treatment,”. ISIJ Int. 34, 205–210 (1994)

    Article  Google Scholar 

  8. D. Mohan Lal, S. Renganarayanan, A. Kalanidhi, Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics 41, 149–155 (2001)

    Article  Google Scholar 

  9. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K. Stiasny, Effect of deep cryogenic treatment on the mechanical properties of tool steels. J. Mater. Process. Technol. 118, 350–355 (2001)

    Article  Google Scholar 

  10. A. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O. Razumov, A. Skoblik et al., Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Mater. Sci. Eng., A 527, 7027–7039 (2010)

    Article  Google Scholar 

  11. V. Alexiades, E.C. Aifantis, Singular problems in the theory of stress-assisted diffusion. SIAM J. Math. Anal. 14, 925–933 (1983)

    Article  Google Scholar 

  12. A. Akhbarizadeh, M. Golozar, A. Shafeie, M. Kholghy, Effects of austenizing time on wear behavior of D6 tool steel after deep cryogenic treatment. J. Iron. Steel Res. Int. 16, 29–32 (2009)

    Article  Google Scholar 

  13. K. Amini, A. Akhbarizadeh, S. Javadpour, Investigating the effect of the quench environment on the final microstructure and wear behavior of 1.2080 tool steel after deep cryogenic heat treatment. Mater. Des. 45, 316–322 (2012)

    Article  Google Scholar 

  14. M. Koneshlou, K. Meshinchi Asl, F. Khomamizadeh, Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel. Cryogenics 51, 55–61 (2011)

    Article  Google Scholar 

  15. A. Oppenkowski, S. Weber, W. Theisen, Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. J. Mater. Process. Technol. 210, 1949–1955 (2010)

    Article  Google Scholar 

  16. A. Hadi, MS thesis, Maleke-ashtar University of Technology, Isfahan, Iran (2014) (in Persian)

  17. ASTM International, Iron and Steel Products, Annual Book of ASTM Standards, A370-B, 01.01 (ASTM International, West Conshohocken, 1989)

  18. ASTM Standard E8M-04, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, 2004)

    Google Scholar 

  19. P. Baldissera, Deep cryogenic treatment of AISI 302 stainless steel: Part I—Hardness and tensile properties. Mater. Des. 31, 4725–4730 (2010)

    Article  Google Scholar 

  20. T. Yu, J. Yang, Effect of retained austenite on GPM A30 high-speed steel. J. Mater. Eng. Perform. 16, 500–507 (2007)

    Article  Google Scholar 

  21. M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, vol. 547 (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  22. T. Sakaki, K. Ohnuma, K. Sugimoto, Y. Ohtakara, Plastic anisotropy of dual-phase steels. Int. J. Plast 6, 591–613 (1990)

    Article  Google Scholar 

  23. S. Zhirafar, A. Rezaeian, M. Pugh, Effect of cryogenic treatment on the mechanical properties of 4340 steel. J. Mater. Process. Technol. 186, 298–303 (2007)

    Article  Google Scholar 

  24. D. Senthilkumar, I. Rajendran, M. Pellizzari, J. Siiriainen, Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. J. Mater. Process. Technol. 211, 396–401 (2011)

    Article  Google Scholar 

  25. G.E. Totten, Steel Heat Treatment: Metallurgy and Technologies, vol. 1 (CRC Press, Boca Raton, 2007)

    Google Scholar 

  26. M. Sauzay, K. Vor, Influence of plastic slip localization on grain boundary stress fields and microcrack nucleation. Eng. Fract. Mech. 110, 330–349 (2013)

    Article  Google Scholar 

  27. R. Padmanabhan, W. Wood, Precipitation of ϵ carbide in martensite. Mater. Sci. Eng. 65, 289–297 (1984)

    Article  Google Scholar 

  28. D. Jack, K. Jack, Invited review: carbides and nitrides in steel. Mater. Sci. Eng. 11, 1–27 (1973)

    Article  Google Scholar 

  29. A. Zare, A. Ekrami, Effect of martensite volume fraction on work hardening behavior of triple phase (TP) steels. Mater. Sci. Eng., A 528, 4422–4426 (2011)

    Article  Google Scholar 

  30. ASM Handbook, Fractography, vol. 12 (2nd printing, 1992) (ASM International, Materials Park, 1987), p. 217

  31. A. Zare, A. Ekrami, Influence of martensite volume fraction on tensile properties of triple phase ferrite–bainite–martensite steels. Mater. Sci. Eng., A 530, 440–445 (2011)

    Article  Google Scholar 

  32. R.W.K. Honeycombe, H.K.D.H. Bhadeshia, Steels: Microstructure and Properties (Edward Arnold, London, 1981)

    Google Scholar 

  33. P. Novak et al., A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. Mech. Phys. Solids 58, 206–226 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Zare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, A., Mansouri, H. & Hosseini, S.R. Effect of Deep Cryogenic Treatment on the Microstructure and Mechanical Properties of HY-TUF Steel. Metallogr. Microstruct. Anal. 4, 169–177 (2015). https://doi.org/10.1007/s13632-015-0206-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0206-4

Keywords

Navigation