Skip to main content
Log in

Posta Pneumatica: evoluzione della fase pre-analitica nei Servizi di Medicina di Laboratorio; aspetti organizzativi e gestionali

Pneumatic Tube: evolution of the pre-analytical phase in services of laboratory medicine; organizational and management issues

  • Articolo originale
  • Published:
La Rivista Italiana della Medicina di Laboratorio - Italian Journal of Laboratory Medicine

Riassunto

Premesse.

Un impianto di “posta pneumatica”, anche noto come sistema di tubi pneumatici o tubi di Lamson, è un sistema di trasporto per recapitare oggetti in alcuni contenitori cilindrici che vengono propulsi attraverso una rete di tubi tramite l’aria compressa oppure il vuoto generato da pompe.

Metodi.

Il lavoro descrive l’esperienza all’IRCCS Policlinico San Donato con l’impianto di trasporto leggero “Hospital Pneumatic Tube System” modello T3, prodotto da Oppent (Advance Motion Technology).

Risultati.

Il trasporto giornaliero di materiale organico è quantificabile in 2000 provette, con concentrazione in 8 ore (dalle 8.00 alle 16.00) e un traffico medio orario di n. 250 provette. La velocità di trasporto è 3 m/s; il tempo tecnico di spedizione 37,5 s, il tempo di posizionamento apparecchiature 7 s. Il numero massimo di provette in un bossolo è 24; il numero medio di provette spedite in un bossolo è 12; il numero medio di spedizioni orarie è 19. Il tempo di invio di un bossolo da Pronto Soccorso al Laboratorio è di 3,15 min.

Conclusioni.

Il servizio di posta pneumatica ha sensibilmente aumentato il grado di qualità del Laboratorio in termini di efficienza (come Turn Around Time), di tracciabilità delle consegne e di sicurezza (come riduzione del numero di perdite dei campioni o di errori dovuti alla consegna a una destinazione non corretta).

Summary

Background.

A system of “pneumatic mail”, also known as a system of pneumatic tubes or hoses, Lamson, is a transport system for delivering objects in some cylindrical containers that are driven through a network of tubes by compressed air or vacuum generated by pumps.

Methods.

The work describes the experience IRCCS Policlinico San Donato with the implantation of light transport “Hospital Pneumatic Tube System” T3, produced by Oppent (Advance Motion Technology).

Results.

The daily transport of organic material is estimated at 2000 tubes, with concentration in 8 hours (from 8.00 a.m. to 4.00 p.m.), and an average traffic time No. 250 tubes. The transport speed is 3 m/s; technician time of shipment 37.5 s, the time of positioning equipment 7 s. The maximum number of tubes in a cartridge case is 24; the average number of tubes shipped in a cartridge case is 12; the average number of shipments per hour is 19. The time of sending a cartridge case from the ER to the Laboratory is 3.15 min.

Conclusions.

The service of pneumatic tube has significantly increased the degree of quality of the laboratory in terms of efficiency (such as Turn Around Time), of traceability of deliveries and security (as a reduction in the number of losses of the samples or errors due to delivery to an incorrect destination).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliografia

  1. Amann G, Zehntner C, Marti F et al. (2012) Effect of acceleration forces during transport through a pneumatic tube system on ROTEM® analysis. Clin Chem Lab Med 50:1335–1342

    Article  CAS  PubMed  Google Scholar 

  2. Ballas SK (2014) A predecessor of the current blood bank pneumatic tube delivery system. Transfusion 54:3035

    Article  PubMed  Google Scholar 

  3. Bruner KW Jr, Kissling CW (1980) Evaluation of a pneumatic-tube system for delivery of blood specimens to the blood bank. Am J Clin Pathol 73:593–596

    PubMed  Google Scholar 

  4. Bussolati G, Chiusa L, Cimino A et al. (2008) Tissue transfer to pathologylabs: under vacuum is the safe alternative to formalin. Virchows Arch 452:229–231

    Article  PubMed  Google Scholar 

  5. Colucci G, Giabbani E, Barizzi G et al. (2011) Laboratory-based ROTEM(®) analysis: implementing pneumatic tube transport and real-time graphic transmission. Int J Lab Hematol 33:441–446

    Article  CAS  PubMed  Google Scholar 

  6. Dale JC, Steindel SJ, Walsh M (1998) Early morning blood collections: a College of American Pathologists Q-Probes study of 657 institutions. Arch Pathol Lab Med 122:865–870

    CAS  PubMed  Google Scholar 

  7. Green M (1995) Successful alternatives to alternate site testing. Use of a pneumatic tube system to the central laboratory. Arch Pathol Lab Med 119:943–947

    CAS  PubMed  Google Scholar 

  8. Di Novi C, Minniti D, Barbaro S et al. (2010) Vacuum-based preservation of surgical specimens: an environmentally-safe step towards a formalin-free hospital. Sci Total Environ 408:3092–3095

    Article  PubMed  Google Scholar 

  9. Ellis G (2009) An episode of increased hemolysis due to a defective pneumatic air tube delivery system. Clin Biochem 42:1265–1269

    Article  PubMed  Google Scholar 

  10. Evliyaoğlu O, Toprak G, Tekin A et al. (2012) Effect of pneumatic tube delivery system rate and distance on hemolysis of blood specimens. J Clin Lab Anal 26:66–69

    Article  PubMed  Google Scholar 

  11. Fernandes CM, Worster A, Eva K et al. (2006) Pneumatic tube delivery system for blood samples reduces turnaround times without affecting sample quality. J Emerg Nurs 32:139–143

    Article  PubMed  Google Scholar 

  12. Keshgegian AA, Bull GE (1992) Evaluation of a soft-handling computerized pneumatic tube specimen delivery system. effects on analytical results and turnaround time. Am J Clin Pathol 97:535–540

    CAS  PubMed  Google Scholar 

  13. Sylte MS, Wentzel-Larsen T, Bolann BJ (2013) Random variation and systematic error caused by various preanalytical variables, estimated by linear mixed-effects models. Clin Chim Acta 415:196–201

    Article  CAS  PubMed  Google Scholar 

  14. Tanley PC, Wallas CH, Abram MC et al. (1987) Use of a pneumatic tube system for delivery of blood bank products and specimens. Transfusion 27:196–198

    Article  CAS  PubMed  Google Scholar 

  15. Thalén S, Forsling I, Eintrei J et al. (2013) Pneumatic tube transport affects platelet function measured by multiplate electrode aggregometry. Thromb Res 132:77–80

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano M. Corsi Romanelli.

Ethics declarations

Human and Animal rights

L’articolo non contiene alcuno studio eseguito su esseri umani e su animali da parte degli autori.

Conflitti di interesse

Nessuno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bet, V.M., Marazzi, M.G., Vianello, E. et al. Posta Pneumatica: evoluzione della fase pre-analitica nei Servizi di Medicina di Laboratorio; aspetti organizzativi e gestionali. Riv Ital Med Lab 11, 165–170 (2015). https://doi.org/10.1007/s13631-015-0093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13631-015-0093-3

Parole chiave

Keywords

Navigation