Skip to main content

Advertisement

Log in

Effect of Cynodon dactylon on rotenone induced Parkinson’s disease

  • Research Article
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

In the present study, the aqueous extract of Cynodon dactylon (AECD) Pers. (Graminae) was evaluated for anti-parkinson’s activity in rats. The anti-parkinson’s effect of AECD was studied against rotenone (2 mg/kg, s.c.) - induced parkinsons in rats. In this study, chronic administration of rotenone in rats (28 days) produced motor dysfunctions like catalepsy and muscle rigidity along with a reduction in locomotor activity. Rotenone administration was also found to generate oxidative stress in the brain as evident from an increase in the level of TBARS and decrease in the levels of SOD and GSH. Pretreatment with AECD resulted in a significant (p < 0.001) decrease in catalepsy and muscle rigidity along with a significant (p < 0.001) increase in locomotion as compared to the rotenone-treated control group. AECD treated rats also showed a reduction in the TBARS level and an increase in the GSH, SOD and CAT levels; thus reducing the oxidative stress in the brain of animals. The study thus proved that Cynodon dactylon treatment significantly attenuated the motor defects and also protected the brain from oxidative stress, both induced by rotenone. These results strongly indicate the possible therapeutic potential of Cynodon dactylon as an antioxidant in Parkinson’s disease and other movement disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 2nd edn. Chemic Academic Press, New York, pp 673–685

    Google Scholar 

  • Agharkar SP (1991) Medicinal plants of Bombay Presidency. Scientific Publishers, Mumbai, pp 80–87

    Google Scholar 

  • Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136:317–324

    Article  PubMed  CAS  Google Scholar 

  • Auddy B, Ferreira M, Blasina F, Lafon L, Arredondo F, Dajas F, Tripathi PC, Seal T, Mukherje B (2003) Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol 84:131–138

    Article  PubMed  CAS  Google Scholar 

  • Babu RDS, Neeharika V, Pallavi V, Reddy MB (2009) Antidiarrheal activity of Cynodon Dactylon. Pers Phcog Mag 5:23–27

    Google Scholar 

  • Baskar AA, Ignacimuthu S (2010) Chemopreventive effect of Cynodon dactylon (L.) Pers. extract against DMH-induced colon carcinogenesis in experimental animals. Exp Toxicol Pathol 62(4):423–431

    Article  Google Scholar 

  • Betarbet R, Sherer TB, Greenamyre JT (2002) Animal models of Parkinson’s disease. Bioessays 24(4):308–318

    Article  PubMed  CAS  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 6:882–888

    Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2006) Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes. Eur J Pharmacol 52(1–3):55–66

    Article  Google Scholar 

  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mo1 Biol 4(3):86–116

    Google Scholar 

  • Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, Hastings TG, Kang UJ, Zhuang X (2008) Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28(2):425–433

    Article  PubMed  Google Scholar 

  • Collier TJ, Sortwell CE (1999) Therapeutic potential of nerve growth factors in Parkinson’s disease. Drug Aging 14:261–287

    Article  CAS  Google Scholar 

  • Costall B, Naylor RJ (1974) On catalepsy and catatonia and the predictability of the catalepsy test for neuroleptic activity. Psychopharmacologia 34(3):233–241

    Article  PubMed  CAS  Google Scholar 

  • Dhanasekaran M, Tharakan B, Manyam BV (2008) Antiparkinson drug- Mucuna pruriens shows antioxidant and metal chelating activity. Phytother Res 22(1):6–11

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Holley AE, Flitter WD (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97

    Article  PubMed  CAS  Google Scholar 

  • Dorval J, Hontela A (2003) Role of glutathione redox cycle and catalase in defence against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 192(2):191–200

    Article  PubMed  CAS  Google Scholar 

  • Emborg ME (2004) Evaluation of animal models of Parkinson’s disease for neuroprotective strategies. J Neurosci Methods 139:121–143

    Article  PubMed  CAS  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol: 259-272.

  • Garg VK, Paliwal SK (2011) Anti-inflammatory activity of aqueous extract of Cynodon dactylon. Int J Pharmacol 1-6.

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50:1346–1350

    Article  PubMed  CAS  Google Scholar 

  • Gralla EB, Kosman DJ (1992) Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Genet 30:251–319

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Kotaleski JH, Menard A, Saitoh K, Wikstrom M (2005) Mechanisms for selection of basic motor programs-roles for the striatum and pallidum. Trends Neurosci 28:364–370

    Article  PubMed  CAS  Google Scholar 

  • Halegrahara N, Ponnusamy K (2010) Neuroprotective effect of Centella asiatica extract (CEA) on experimentally induced parkinsonism in aged Sprague-Dawley rats. J Toxicol Sci 35:41–47

    Article  Google Scholar 

  • Halliwell B, Gutteridge J (1985) Oxygen radicals and the nervous system. Trends Neurosci 8:22–29

    Article  CAS  Google Scholar 

  • Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL (1998) Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res 780:294–303

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44:S72–S84

    PubMed  CAS  Google Scholar 

  • Karch AM (2009) Focus on nursing pharmacology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, p 3

    Google Scholar 

  • Knight TR, Fariss MW, Farhood A, Jaeschke H (2003) Role of lipid peroxidation as mechanism of liver injury after acetaminophen overdose in mice. Toxicol Sci 76(1):229–236

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni SK (2008) Handbook of experimental pharmacology. Vallabh Prakashan, Delhi, pp 136–137

    Google Scholar 

  • Kumar R, Bheemachari PM, Bansal R, Singh L (2010) Evaluation of antiepileptic activity of leaf extract of Cynodon dactylon in validated animal models. Int J Pharmacy Res 1(2):65–73

    Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson’s disease. N Engl J Med 339:1130

    Article  PubMed  CAS  Google Scholar 

  • Lapointe N, St-Hilaire M, Martinoli MG, Blanchet J, Gould CR, Cicchetti F (2004) Rotenone induces non-specific central nervous and systemic toxicity. FASEB J 18:717–719

    PubMed  CAS  Google Scholar 

  • Lotharius J, O’Malley KL (2000) The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 275:38581–38588

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglias are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex-I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant 76:456–459

    CAS  Google Scholar 

  • Najafi M, Nazemiyeh H, Ghavimi H, Gharakhani A, Garjani A (2008) Effects of hydroalcoholic extract of Cynodon dactylon (L.) pers. on ischemia/reperfusion-induced arrhythmias. DARU 16(4):233–238

    Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thio-barbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Pal DK (2009) Determination of brain biogenic amines in Cynodon dactylon pers. and Cyperus rotundus treated mice. Int J Pharmacy Pharm Sci 1(1):190–197

    Google Scholar 

  • Parekh J, Chanda SV (2007) In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turk J Biol 31:53–58

    CAS  Google Scholar 

  • Parekh J, Jadeja D, Chanda S (2005) Efficacy of aqueous and methanol extracts of some medicinal plants for potential antibacterial activity. Turk J Biol 29:203–210

    Google Scholar 

  • Pati AK (2010) Cynodon, Durba Grass, An Ayurvedic Medicinal Grass Grown In India (Press release).

  • Patil M, Jalalpure SS, Prakash NS, Kokate CK (2005) Anti ulcer properties of Cynodon dactylon extracts in rats. Acta Horticulturae 680:115

    Google Scholar 

  • Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G (2010) Antioxidant potential of oral feeding of Cynodon dactylon extract on diabetes-induced oxidative stress. J Food Biochem 34:78–92

    Article  CAS  Google Scholar 

  • Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik N (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146(2):741–755

    Article  PubMed  CAS  Google Scholar 

  • Santhi R, Annapoorani S (2010) Efficacy of Cynodon dactylon for immunomodulatory activity. Drug Invention Today 2(2):112–114

    CAS  Google Scholar 

  • Saravanan KS, Sindhu KM, Senthilkumar KS, Mohanakumar KP (2006) L Deprenyl protects against rotenone-induced, oxidative stress mediated dopaminergic neurodegeneration in rats. Neurochem Int 49:28–40

    Article  PubMed  CAS  Google Scholar 

  • Saravanan KS, Sindhu KM, Mohanakumar KP (2007) Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J Pineal Res 42(3):247–253

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (1990) Response of plant antioxidant defense genes to environmental stress. Adv Genet 28:1–41

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WJ, Alam M (2006) Controversies on new animal models of Parkinson’s disease pro and con: the rotenone model of Parkinson’s disease (PD). J Neural Transm 70:273–276

    CAS  Google Scholar 

  • Scott L (2006) Identifying poor symptom control in Parkinson’s disease. Nurs Times 2:30–32

    Google Scholar 

  • Shabi MM, Gayathri K, Venkatalakshmi R, Sasikala C (2010) Chemical Constituents of hydro alcoholic extract and phenolic fraction of Cynodon dactylon. Int J Chem Tech Res 2(1):149–154

    Google Scholar 

  • Neha S, Rana AC, Bafna PA (2011) Effect of aqueous extract of Cynodon dactylon on reserpine induced catalepsy. Int J Pharmacy Pharm Sci 3(4):424–426

    Google Scholar 

  • Sherer TB, Betarbet R, Greenamyre JT (2002) Environment, mitochondria and Parkinson’s disease. Neuroscientist 8:192–197

    PubMed  CAS  Google Scholar 

  • Sherer TB, Betarberbet R, Tasta CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Yagi AM, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(340):10756–10764

    PubMed  CAS  Google Scholar 

  • Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT (2007) Mechanism of toxicity of pesticides acting at complex 1: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 100(6):1469–1479

    PubMed  CAS  Google Scholar 

  • Shivalinge Gowda KP, Satish S, Mahesh CM, Kumar V (2009) Study on the diuretic activity of Cynodon dactylon root stalk extract in albino rats. Res J Pharm Tech 2(2):338–340

    Google Scholar 

  • Singh SK, Kesari AN, Gupta RK, Jaiswal D, Watal G (2007) Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats. J Ethnopharmacol 114(2):174–179

    Article  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  • Surendra V, Prakash T, Sharma UR, Gohl D, Fadadul SD, Kotresha D (2008) Hepatoprotective activity of aerial parts of Cynodon dactylon against CCl4- induced in rats. Phcog Mag 4:195–201

    Google Scholar 

  • Verma R, Nehru B (2009) Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson’s disease. Neurochem Int 55:369–375

    Article  PubMed  CAS  Google Scholar 

  • Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT, Brecher P, Cohen RA (1998) Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82:810–818

    Article  PubMed  CAS  Google Scholar 

  • Wooten GF (1997) Neurochemistry and neuropharmacology of Parkinson’s disease. In: Watts RL, Koller O (eds) Movement disorders; neurologic principles and practice. McGraw Hill, New York, pp 153–160

    Google Scholar 

  • Yang SF, Yangk ZQ, Wu Q, Sun AS, Huang XN, Shi JS (2001) Protective effect and mechanism of Ginkgo biloba leaf extracts for Parkinson’s disease induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Acta Pharmacol Sinica 22(12):1089–1093

    CAS  Google Scholar 

  • Yong R, Liu RW, Jiang H, Jiang Q, Feng J (2005) Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 280(40):34105–34112

    Article  Google Scholar 

  • Zigmond MJ, Stricker EM (1989) Animal models of parkinsonism using selective neurotoxins: clinical and basic implications. Int Rev Neurobiol 31:1–79

    Article  PubMed  CAS  Google Scholar 

  • Zoccarato F, Toscano P, Alexandre A (2005) Dopamine-derived dopaminochrome promotes H2O2 release at mitochondria complex-1. J Biol Chem 280(16):15587–15594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank The Director, Rayat Institute of Pharmacy (Punjab) for providing the necessary facilities for the research work. The authors would also like to thank Chemical Resources, Panchkula (H.R.) and Amsar Pvt. Ltd., Indore (M.P.) for providing gift samples of drugs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Bafna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, N., Bafna, P. Effect of Cynodon dactylon on rotenone induced Parkinson’s disease. Orient Pharm Exp Med 12, 167–175 (2012). https://doi.org/10.1007/s13596-012-0075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-012-0075-1

Keywords

Navigation