Skip to main content

Advertisement

Log in

Biochar organic fertilizers from natural resources as substitute for mineral fertilizers

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Biochars are new, carbon-rich materials that could sequester carbon in soils improve soil properties and agronomic performance, inspired by investigations of Terra Preta in Amazonia. However, recent studies showed contrasting performance of biochar. In most studies, only pure biochar was used in tropical environments. Actually, there is little knowledge on the performance of biochar in combination with fertilizers under temperate climate. Therefore, we conducted an experiment under field conditions on a sandy Cambisol near Gorleben in Northern Germany. Ten different treatments were established in 72-m2 plots and fivefold field replicates. Treatments included mineral fertilizer, biogas digestate, microbially inoculated biogas digestate and compost either alone or in combination with 1 to 40 Mg ha−1 of biochar. Soil samples were taken after fertilizer application and maize harvest. Our results show that the biochar addition of 1 Mg ha−1 to mineral fertilizer increased maize yield by 20 %, and biochar addition to biogas digestate increased maize yield by 30 % in comparison to the corresponding fertilizers without biochar. The addition of 10 Mg ha−1 biochar to compost increased maize yield by 26 % compared to pure compost. The addition of 40 Mg ha−1 biochar to biogas digestate increased maize yield by 42 % but reduced maize yield by 50 % when biogas digestate was fermented together with biochar. Biochar-fertilizer combinations increased K, Mg and Zn and reduced Na, Cu, Ni and Cd uptake into maize. Overall, our findings demonstrate that biochar-fertilizer combinations have a better performance than pure fertilizers, in terms of yield and plant nutrition. Therefore, an immediate substitution of mineral fertilizers is possible to close regional nutrient cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amoruwa GM, Ogunlela VB, Ologunde OO (1987) Agronomic performance and nutrient concentration of Maize (Zea mays L.) as influenced by nitrogen fertilization and plant density. J Agron Crop Sci 159:226–231. doi:10.1111/j.1439-037X.1987.tb00093.x

    Article  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Sci Soc Am J 70:448. doi:10.2136/sssaj2005.0096

    Article  CAS  Google Scholar 

  • Duggan JC, Wiles CC (1976) Effect of municipal compost and nitrogen fertilizer on selected soils and plants. Compos Sci 17:24–31

    CAS  Google Scholar 

  • Fischer D, Glaser B (2012) Synergisms between compost and biochar for sustainable soil amelioration. In: Sunil K, Bharti A (eds) Management of organic waste. InTech, Rijeka, pp 167–198

    Google Scholar 

  • Gabrielle B, Da-Silveira J, Houot S, Michelin J (2005) Field-scale modelling of carbon and nitrogen dynamics in soils amended with urban waste composts. Agric Ecosyst Environ 110:289–299. doi:10.1016/j.agee.2005.04.015

    Article  Google Scholar 

  • Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51. doi:10.1016/j.gca.2010.11.029

    Article  CAS  Google Scholar 

  • Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678. doi:10.1016/S0146-6380(00)00044-9

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W, Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. doi:10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140. doi:10.1016/j.jtemb.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187. doi:10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. doi:10.1016/j.soilbio.2011.10.012

    Article  CAS  Google Scholar 

  • Kammann C, Linsel S, Goeßling J, Kyoro H (2011) Influence of biochar on drought tolerance of Chenopodium quinoa Wild and on soil-plant relations. Plant Soil 345:195–210. doi:10.1007/s11104-011-0771-5

    Article  CAS  Google Scholar 

  • Karhu K, Mattila T, Bergstroem I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313. doi:10.1016/j.agee.2010.12.005

    Article  CAS  Google Scholar 

  • Knowles OA, Robinson BH, Contangelo A, Clucas L (2011) Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci Total Environ 409:3206–3210. doi:10.1016/j.scitotenv.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  • Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173. doi:10.2136/sssaj2008.0232

    Article  CAS  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442. doi:10.1016/j.geoderma.2010.05.012

    Article  CAS  Google Scholar 

  • Lavalle C, Micale F, Houston TD, Camia A, Hiederer R, Lazar C, Conte C, Amatulli G, Genovese G (2009) Climate change in Europe. 3. Impact on agriculture and forestry—a review. Agron Sustain Dev 29:433–446. doi:10.1051/agro/2008068

    Article  Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357. doi:10.1023/A:1022833116184

    Article  CAS  Google Scholar 

  • Liu J, Schulz H, Brandl S, Miethke H, Huwe B, Glaser B (2012) Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J Plant Nutr Soil Sci 175:698–707. doi:10.1002/jpln.201100172

    Article  CAS  Google Scholar 

  • Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L et al (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373:583–594. doi:10.1007/s11104-013-1806-x

    Article  CAS  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna Oxisol. Plant Soil 333:117–128. doi:10.1007/s11104-010-0327-0

    Article  CAS  Google Scholar 

  • Mays DA, Terman GL, Duggan JC (1973) Municipal compost: effects on crop yields and soil properties. J Environ Qual 2:89. doi:10.2134/jeq1973.00472425000200010011x

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Government Printing Office Washington, DC USDA Circular 1–19

  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451. doi:10.1007/s11104-011-0948-y

    Article  CAS  Google Scholar 

  • Paul EA (ed) (2007) Soil microbiology, ecology and biochemistry, 3rd edn. Academic, San Diego

    Google Scholar 

  • Richter C, Piepho H, Thöni H (2009) The ‘latin rectangle’—its layout, randomisation, and analysis combined with a revision of the commonly used German terminology. Pflanzenbauwissenschaften 13:1–14

    Google Scholar 

  • Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175:410–422. doi:10.1002/jpln.201100143

    Article  CAS  Google Scholar 

  • Shiralipour A, McConnell DB, Smith WH (1992) Physical and chemical properties of soils as affected by municipal solid waste compost application. Biomass Bioenergy 3:261–266. doi:10.1016/0961-9534(92)90030-T

    Article  CAS  Google Scholar 

  • Trueby P, Aldinger E (1989) Eine Methode zur Bestimmung austauschbarer Kationen in Waldböden. Z Pflanzenernähr Bodenkd 152:301–306. doi:10.1002/jpln.19891520307

    Article  CAS  Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441. doi:10.1016/j.jhazmat.2011.03.063

    Article  CAS  PubMed  Google Scholar 

  • Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27:205–212. doi:10.1111/j.1475-2743.2011.00340.x

    Article  Google Scholar 

  • Van Zwieten L, Kimber S, Downie A, Chan KY, Cowie A, Wainberg R, Morris S (2007) Papermill char: benefits to soil health and plant production. Proceedings of the Conference of the International Agrichar Initiative, 30 April–2 May 2007, Terrigal, Australia

  • van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J et al (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246. doi:10.1007/s11104-009-0050-x

    Article  Google Scholar 

  • Walker DJ, Bernal MP (2008) The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresour Technol 99:396–520. doi:10.1016/j.biortech.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  • Weber J, Karczewska A, Drozd J, Licznar M, Licznar S, Jamroz E, Kocowicz A (2007) Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol Biochem 39:1294–1302. doi:10.1016/j.soilbio.2006.12.005

    Article  CAS  Google Scholar 

  • Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B (2013) Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 59:264–278. doi:10.1016/j.biombioe.2013.08.026

    Article  CAS  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495. doi:10.1111/j.1747-0765.2006.00065.x532

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Federal Ministry of Education and Research (BMBF) for financial support within the ClimaCarbo project (No. 01LY1110B). We also thank the hardworking helpers who conducted this field trial and collected samples and data regardless of weather conditions: Thomas Chudy, Daniel Habenicht, Graf Fried von Bernstorff, Jens Schneeweiß, Hardy Schulz, Katharina Winter, Daniel Fischer, Katharina Karnstedt, Bianca Karnstedt, Steven Polifka, Tobias Bromm, Marianne Benensch, Susanne Both and many other involved students and technical assistants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruno Glaser or Katja Wiedner.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glaser, B., Wiedner, K., Seelig, S. et al. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 35, 667–678 (2015). https://doi.org/10.1007/s13593-014-0251-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0251-4

Keywords

Navigation