Skip to main content

Advertisement

Log in

Simulation of field NH3 and N2O emissions from slurry spreading

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Land application of manures and slurries are a major source of pollution such as water contamination by nitrates and greenhouse gas emissions. NH3 and N2O emissions can be lowered by suitable spreading techniques. However, a comprehensive review of the impact of slurry spreading techniques is lacking. For that we developed a model, named OSEEP, that simulates the effect of slurry incorporation, slurry spatial distribution, and soil compaction on NH3 and N2O emissions. OSEEP integrates a soil compaction model, a hydraulic pedotransfer function, a NH3 volatilization model, and a crop model. We ran OSEEP for five sites in France for 7 years. Four techniques were simulated: broadcast spreading, band spreading, incorporation after surface spreading, and injection. We tested various sizes of slurry tankers and tractors. We calculated NH3 and N2O relative emissions from various spreading techniques with respect to band spreading. Results show good agreement between model calculation and published field data. We found that slurry applied by a self-propelled 15-m3 tanker with extra large tires led to an increase of 20 % in N2O emission, by comparison with a 15-m3 tanker trailed by a tractor. Hence, we show that soil compaction should be taken into account to optimize trade-offs between NH3 and N2O emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bessou C, Mary B, Léonard J, Roussel M, Gréhan E, Gabrielle B (2010) Modelling soil compaction impacts on nitrous oxide emissions in arable fields. Eur J Soil Sci 61:348–363. doi:10.1111/j.1365-2389.2010.01243.x

    Article  CAS  Google Scholar 

  • Boote KJ, Jones JW, Pickering NB (1996) Potential uses and limitations of crop models. Agron J 88:704. doi:10.2134/agronj1996.00021962008800050005x

    Article  Google Scholar 

  • Brisson N, Launay M, Mary B, Beaudoin N (2008) Conceptual basis, formalisations and paramaterization of the STICS crop model. Quae, Versailles

  • Cannavo P, Recous S, Parnaudeau V, Reau R (2008) Modeling N dynamics to assess environmental impacts of cropped soils. Adv Agron 97:131–174. doi:10.1016/S0065-2113(07)00004-1

    Article  CAS  Google Scholar 

  • Clemens J, Vandré R, Kaupenjohann M, Goldbach H (1997) Ammonia and nitrous oxide emissions after landspreading of slurry as influenced by application technique and dry matter-reduction. II. Short term nitrous oxide emissions. J Plant Nutr Soil Sci 160:491–496

    CAS  Google Scholar 

  • Défossez P, Richard G, Boizard H, O’Sullivan MF (2003) Modeling change in soil compaction due to agricultural traffic as function of soil water content. Geoderma 116:89–105. doi:10.1016/S0016-7061(03)00096-X

    Article  Google Scholar 

  • Dosch P, Gutser R (1996) Reducing N losses (NH3, N2O, N2) and immobilization from slurry through optimized application techniques. Fertil Res 43:165–171. doi:10.1007/BF00747697

    Article  Google Scholar 

  • EMEP-EAA (2009) Air pollutant emission inventory guidebook. European Environment Agency (EEA), Copenhagen

    Google Scholar 

  • Gabrielle B, Laville P, Hénault C, Nicoullaud B, Germon JC (2006) Simulation of nitrous oxide emissions from wheat-cropped soils using CERES. Nutr Cycl Agroecosyst 74:133–146. doi:10.1007/s10705-005-5771-5

    Article  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71. doi:10.1579/0044-7447-31.2.59

    PubMed  Google Scholar 

  • Garcia L, Genermont S, Bedos C, Bedos C, Simon NN, Garnier P, Loubet B, Cellier P (2012) Accounting for surface cattle slurry in ammonia volatilization models: the case of Volt’Air. Soil Sci Soc Am J 76:2184–2194. doi:10.2136/sssaj2012.0067

    Article  CAS  Google Scholar 

  • Génermont S, Cellier P (1997) A mechanistic model for estimating ammonia volatilization from slurry applied to bare soil. Agric For Meteorol 88:145–167. doi:10.1016/S0168-1923(97)00044-0

    Article  Google Scholar 

  • Hansen MN, Sommer SG, Madsen NP (2003) Reduction of ammonia emission by shallow slurry injection: injection efficiency and additional energy demand. J Environ Qual 32:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Hénault C, Germon JC (2000) NEMIS, a predictive model of denitrification on the field scale. Eur J Soil Sci 51:257–270. doi:10.1046/j.1365-2389.2000.00314.x

    Article  Google Scholar 

  • IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan

    Google Scholar 

  • Langevin B (2010) Prise en compte de la variabilité des émissions au champ dans l’Analyse de Cycle de Vie des systèmes agricoles. Application à l’épandage de lisier. Thèse de doctorat, Arts et Métiers ParisTech

  • Langevin B, Basset-Mens C, Lardon L (2010) Inclusion of the variability of diffuse pollutions in LCA for agriculture: the case of slurry application techniques. J Clean Prod 18:747–755. doi:10.1016/j.jclepro.2009.12.015

    Article  CAS  Google Scholar 

  • Mosier A, Syers JK, Freney JR (2004) Nitrogen fertilizer: an essential component of increased food, feed, and fiber production. In: Mosier A, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle. Island Press, Washington, pp 3–15

    Google Scholar 

  • O’Sullivan MF, Henshall JK, Dickson JW (1999) A simplified method for estimating soil compaction. Soil Tillage Res 49:325–335. doi:10.1016/S0167-1987(98)00187-1

    Article  Google Scholar 

  • Payraudeau S, van der Werf HMG, Vertès F (2007) Analysis of the uncertainty associated with the estimation of nitrogen losses from farming systems. Agric Syst 94:416–430. doi:10.1016/j.agsy.2006.11.014

    Article  Google Scholar 

  • Peoples MB, Boyer EW, Goulding KWT et al (2004) Pathways of nitrogen loss and their impacts on human health and the environment. In: Mosier A, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle. Island Press, Washington, pp 53–69

    Google Scholar 

  • Perrin A (2013) Evaluation environnementale des systèmes agricoles urbains en Afrique de l’Ouest: Implications de la diversité des pratiques et de la variabilité des émissions d’azote dans l’Analyse du Cycle de Vie de la tomate au Bénin. Thèse de doctorat, AgroParisTech

  • Rodhe L, Pell M, Yamulki S (2006) Nitrous oxide, methane and ammonia emissions following slurry spreading on grassland. Soil Use Manag 22:229–237. doi:10.1111/j.1475-2743.2006.00043.x

    Article  Google Scholar 

  • Saffih-Hdadi K, Défossez P, Richard G, Cui YJ, Tang AM, Chaplain V (2009) A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density. Soil Tillage Res 105:96–103. doi:10.1016/j.still.2009.05.012

    Article  Google Scholar 

  • Sinclair TR, Seligman N (2000) Criteria for publishing papers on crop modeling. Field Crop Res 68:165–172. doi:10.1016/S0378-4290(00)00105-2

    Article  Google Scholar 

  • Smith KA, Jackson DR, Misselbrook TH, Pain BF, Johnson RA (2000) Reduction of ammonia emission by slurry application techniques. J Agric Eng Res 77:277–287. doi:10.1006/jaer.2000.0604

    Article  Google Scholar 

  • Smith E, Gordon R, Bourque C, Campbell A, Génermont S, Rochette P, Mkhabela M (2009) Simulating ammonia loss from surface-applied manure. Can J Soil Sci 89:357–367. doi:10.4141/CJSS08047

    Article  Google Scholar 

  • Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J (2012) No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Res 118:66–87. doi:10.1016/j.still.2011.10.015

    Article  Google Scholar 

  • Søgaard HT, Sommer SG, Hutchings NJ, Huijmans JFM, Bussink DW, Nicholson F (2002) Ammonia volatilization from field-applied animal slurry—the ALFAM model. Atmos Environ 36:3309–3319. doi:10.1016/S1352-2310(02)00300-X

    Article  Google Scholar 

  • Sommer SG, Hutchings NJ (2001) Ammonia emission from field applied manure and its reduction—invited paper. Eur J Agron 15:1–15. doi:10.1016/S1161-0301(01)00112-5

    Article  CAS  Google Scholar 

  • Thirion F, Chabot F (2003) Épandage des boues résiduaires et effluents organiques. Cemagref editions, Antony

  • Thirion F, Pradel M (2010) L’enjeu environnemental des performances mécaniques des épandeurs. Sci Eaux Territ 48–53

  • Thompson RB, Pain BF, Rees YJ (1990) Ammonia volatilization from cattle slurry following surface application to grassland—II. Influence of application rate, wind speed and applying slurry in narrow bands. Plant Soil 125:119–128. doi:10.1007/BF00010751

    Article  CAS  Google Scholar 

  • Thorman E, Hansen N, Misselbrook TH, Sommer G (2008) Algorithm for estimating the crop height effect on ammonia emission from slurry applied to cereal fields and grassland. Agron Sustain Dev 28:373–378. doi:10.1051/agro:2008013

    Article  CAS  Google Scholar 

  • Van Genuchten MT (1980) Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Vandré R, Clemens J, Goldbach H, Kaupenjohann M (1997) NH3 and N2O emissions after landspreading of slurry as influenced by application technique and dry matter-reduction. I. NH3 emissions. J Plant Nutr Soil Sci 160:303–307

    Google Scholar 

  • Velthof GL, Kuikman PJ, Oenema O (2003) Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol Fertil Soils 37:221–230

    CAS  Google Scholar 

  • Webb J, Pain B, Bittman S, Morgan J (2010) The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—a review. Agric Ecosyst Environ 137:39–46. doi:10.1016/j.agee.2010.01.001

    Article  Google Scholar 

  • Weslien P, Klemedtsson L, Svensson L, Galle B, Kasimir-Klemedtsson Å, Gustafsson A (1998) Nitrogen losses following application of pig slurry to arable land. Soil Use Manag 14:200–208. doi:10.1111/j.1475-2743.1998.tb00150.x

    Article  Google Scholar 

  • White JW, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crop Res 124:357–368. doi:10.1016/j.fcr.2011.07.001

    Article  Google Scholar 

  • Wösten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185. doi:10.1016/S0016-7061(98)00132-3

    Article  Google Scholar 

  • Wulf S, Maeting M, Clemens J (2002a) Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: II. greenhouse gas emissions. J Environ Qual 31:1795–1801. doi:10.2134/jeq2002.1795

    Article  CAS  PubMed  Google Scholar 

  • Wulf S, Maeting M, Clemens J (2002b) Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: I. Ammonia volatilization. J Environ Qual 31:1789–1794. doi:10.2134/jeq2002.1795

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to L. Garcia for his help with Volt’Air simulations. We also thank V. Parnaudeau, B. Mary, N. Beaudoin, M. Launay, and the late N. Brisson for their advices with STICS, as well as S. Guillaume, O. Naud, C. Tinet, and B. Gabrielle for their expertise on modeling and programming issues, and P. Roux for his support and advice. This work was part of the research project “ECODEFI” (ecodesign of spreading equipment) and was financially supported by ADEME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Langevin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langevin, B., Génermont, S., Basset-Mens, C. et al. Simulation of field NH3 and N2O emissions from slurry spreading. Agron. Sustain. Dev. 35, 347–358 (2015). https://doi.org/10.1007/s13593-014-0248-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0248-z

Keywords

Navigation