Skip to main content
Log in

Better prediction of Mediterranean olive production using pollen-based models

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Olive oil is a major economic resource of the Mediterranean region. Olive crop management can be improved by models that forecast the variable reproductive biology of olive tree. However, the processes controlling olive harvest are complex on large scales. Here, we study the parameters that influence olive fruit production for developing accurate forecasting models. Seventeen aerobiological sampling points have monitored olive pollen grains in Spain, Italy and Tunisia from 1993 to 2012. Six crop models have been developed at two provinces and country scales. The modelling has been done in two steps: (1) typification and (2) modelling by partial least square regression. Results show that higher pollen indexes and water availability during spring are related to an increase of final fruit production in all the studied area. Higher pollen indexes are also positively correlated with air temperature during early spring and autumn. Furthermore, a decrease of fruit production is related with increasing air temperature during winter and summer. To conclude, we have designed accurate models that allow accurate predictions of olive production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera F (2012) Modelos de previsión precoz de cosecha en el olivo (Olea europaea L.) basados en información aerobiológica, fenológica y meteorológica: diseño experimental aplicado al olivar giennense. Instituto de Estudios Giennenses, Jaén

  • Aguilera F, Ruiz-Valenzuela L (2009) Study of the floral phenology of Olea europaea L. in Jaén province (SE Spain) and its relation with pollen emission. Aerobiologia 25:217–225. doi:10.1007/s10453-009-9127-5

    Article  Google Scholar 

  • Aguilera F, Ruiz L, Fornaciari M, Romano B, Galán C, Oteros J, Ben Dhiab A, Msallem M, Orlandi F (2013) Heat accumulation period in the Mediterranean region: phenological response of the olive in different climate areas (Spain, Italy and Tunisia). Int J Biometeorol. doi:10.1007/s00484-013-0666-7

    PubMed  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy, http://www.fao.org/docrep/X0490E/x0490e00.htm

  • Bacelar EA, Santos DL, Moutinho-Pereira JM, Lopes JI, Goncalves BC, Ferreita TC, Correia CM (2007) Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. Plant Soil 292:1–12. doi:10.1007/s11104-006-9088-1

    Article  CAS  Google Scholar 

  • Bacelar EA, Moutinho-Pereira JM, Goncalves BC, Lopes JI, Correia CM (2009) Physiological responses of different olive genotypes to drought conditions. Acta Physiol Plant 31:611–621. doi:10.1007/s11738-009-0272-9

    Article  CAS  Google Scholar 

  • Barranco D, Fernández-Escobar R, Rallo L (2008) El Cultivo del olivo (8ª Ed). Junta de Andalucía y Ediciones. Mundi-Prensa, Madrid

    Google Scholar 

  • Bastiaanssen WGM, Ali S (2003) A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric Ecosyst Environ 94:321–340. doi:10.1016/S0167-8809(02)00034-8

    Article  Google Scholar 

  • Candau Fernández-Mensaque P, González-Minero FJ, Morales J, Tomas C (1998) Forecasting olive (Olea europaea) crop production by monitoring airborne pollen. Aerobiologia 14:185–190. doi:10.1007/BF02694204

    Article  Google Scholar 

  • Cour P (1974) Nouvelles techniques de détection des flux et des retombées polliniques á la surface du sol. Pollen Spores 16:103–141

    Google Scholar 

  • Cuevas J, Pinillos V, Polito VS (2009) Effective pollination period for ‘Manzanillo’and ‘Picual’olive trees. J Hortic Sci Biotechnol 84:370–374

    Google Scholar 

  • Fei T, Wenbin W, Dandan L, Zhongxin C, Qing H, Tian X (2012) Yield estimation of winter wheat in North China Plain by using crop growth monitoring system (CGMS). In Agro-Geoinformatics (Agro-Geoinformatics). First International Conference on (pp 1–4). IEEE

  • Fornaciari M, Pieroni L, Orlandi F, Romano B (2002) A new approach to consider the pollen variable in forecasting yield models. Econ Bot 56:66–72. doi:10.1663/0013-0001(2002)056[0066:ANATCT]2.0.CO;2

    Article  Google Scholar 

  • Fornaciari M, Orlandi F, Romano B (2005) Yield forecasting for olive trees. Agron J 97:1537–1542. doi:10.2134/agronj2005.0067

    Article  Google Scholar 

  • Galán C, Cariñanos P, García-Mozo H, Alcázar P, Domínguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45:59–63. doi:10.1007/s004840100089

    Article  PubMed  Google Scholar 

  • Galán C, Vázquez L, García-Mozo H, Domínguez E (2004) Forecasting olive (Olea europaea) crop yield based on pollen emission. Field Crop Res 86:43–51. doi:10.1016/S0378-4290(03)00170-9

    Article  Google Scholar 

  • Galán C, García-Mozo H, Vázquez L, Ruiz L, De La Guardia CD, Trigo M (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49(3):184–188. doi:10.1007/s00484-004-0223-5

    Article  PubMed  Google Scholar 

  • Galán C, Cariñanos P, Alcázar P, Domínguez-Vilches E (2007) Spanish Aerobiology Network (REA): management and quality manual. Servicio de publicaciones de la Universidad de Cordoba, Cordoba, Spain

    Google Scholar 

  • Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz De La Guardia C, Domínguez-Vilches E (2008) Modeling olive crop yield in Andalusia, Spain. Agron J 100:98–104. doi:10.2134/agrojnl2006.0345

    Article  Google Scholar 

  • García-Mozo H, Chuine I, Perez-Badía R, Galán C (2008) Aerobiological and meteorological factors influence on olive (Olea europaea L.) crop yield in Castilla-La Mancha (Central Spain). Aerobiologia 24:13–18. doi:10.1007/s10453-007-9075-x

    Article  Google Scholar 

  • García-Mozo H, Orlandi F, Galán C, Fornaciari M, Romano B, Ruiz L, Diaz de la Guardia C, Trigo M, Chuine I (2009) Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis. Theor appl climatol 95:385–395. doi:10.1007/s00704-008-0016-6

    Article  Google Scholar 

  • García-Mozo H, Domínguez-Vílchez E, Galán C (2012) A model to account for variations in holm-oak (Quercus ilex subsp. ballota) acorn production in southern Spain. Ann Agric Environ Med 19:411–416

    Google Scholar 

  • General Department of Agricultural Production (GDAP) (2011) http://www.tn.gov/agriculture/

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • González-Minero FJG, Candau P, Morales J, Tomas C (1998) Forecasting olive crop production based on ten consecutive years of monitoring airborne pollen in Andalusia (southern Spain). Agric Ecosyst Environ 69:201–215. doi:10.1016/S0167-8809(98)00105-4

    Article  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265. doi:10.1111/j.1744-7348.1952.tb00904.x

    Article  Google Scholar 

  • International Olive Council (IOC) (2011) http://www.internationaloliveoil.org/

  • ISTAT (2011) Instituto Nazionale di Statistica. http://agri.istat.it/

  • Keynan N, Waisel Y, Shomer A, Tamir R (1989) Forecasting pollen pollution: correlation with floral development. Ann Allergy 63:417–420

    CAS  PubMed  Google Scholar 

  • Lavalle C, Micale F, Houston TD, Camia A, Hiederer R, Lazar C, Conte C, Amatulli G, Genovese G (2009) Climate change in Europe. 3. Impact on agriculture and forestry A review. Agron Sustain Dev 29(3):433–446

    Article  Google Scholar 

  • Lavee SH (1996) World olive encyclopedia. International Olive Oil Council, 61–106

  • León-Ruiz E, Alcázar P, Domínguez-Vilches E, Galán C (2011) Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia 27:37–50. doi:10.1007/s10453-010-9174-y

    Article  Google Scholar 

  • Melo-Abreu JP, Barranco D, Cordeiro AM, Tous J, Rogado BM, Villalobos FJ (2004) Modelling olive flowering date using chilling for dormancy release and thermal time. Agric For Meteorol 125:117–127. doi:10.1016/j.agrformet.2004.02.009

    Article  Google Scholar 

  • Muñoz AF, Silva I, Tormo R (2000) The relationship between Poaceae pollination levels and cereal yields. Aerobiologia 16:281–286. doi:10.1023/A:1007655223069

    Article  Google Scholar 

  • Orlandi F, Ferranti F, Romano B, Fornaciari M (2003) Olive pollination: flowers and pollen of two cultivars of Olea europaea. N Z J Crop Hortic 31:159–168. doi:10.1080/01140671.2003.9514248

    Article  Google Scholar 

  • Orlandi F, García-Mozo H, Vázquez-Ezquerra L, Romano B, Domínguez-Vilches E, Galán C, Fornaciari M (2004) Phenological olive chilling requirements in Umbria (Italy) and Andalusia (Spain). Plant Biosyst 138:111–116. doi:10.1080/11263500412331283762

    Article  Google Scholar 

  • Orlandi F, Ruga L, Romano B, Fornaciari M (2005) Olive flowering as an indicator of local climatic changes. Theor Appl Climatol 81:169–176. doi:10.1007/s00704-004-0120-1

    Article  Google Scholar 

  • Orlandi F, Lanari D, Romano B, Fornaciari M (2006) New model to predict the timing of olive (Olea europaea) flowering: a case study in central Italy. N Z J Crop Hortic 34:93–99. doi:10.1080/01140671.2006.9514392

    Article  Google Scholar 

  • Orlandi F, Carlo S, Bonofiglio T, Ruga L, Romano B, Fornaciari M (2010) Yield modelling in a Mediterranean species utilizing cause–effect relationships between temperature forcing and biological processes. Sci Hortic-Amst 123:412–417. doi:10.1016/j.scienta.2009.09.015

    Article  Google Scholar 

  • Orlandi F, Garcia-Mozo H, Dhiab AB, Galán C, Msallem M, Fornaciari M (2013) Olive tree phenology and climate variations in the Mediterranean area over the last two decades. Theor Appl Climatol. doi:10.1007/s00704-013-0892-2

    Google Scholar 

  • Oteros J, García-Mozo H, Hervás C, Galán C (2013a) Biometeorological and autoregressive indices for predicting olive pollen intensity. Int J Biometeorol 57(2):307–316. doi:10.1007/s00484-012-0555-5

    Article  CAS  PubMed  Google Scholar 

  • Oteros J, García-Mozo H, Hervás-Martínez C, Galán C (2013b) Year clustering analysis for modelling olive flowering phenology. Int J Biometeorol 57(4):545–555. doi:10.1007/s00484-012-0581-3

    Article  CAS  PubMed  Google Scholar 

  • Palm R (1995) Regression methods including the Eurostat Agromet model and time trends. Joint Research Centre of the E.U. Publication EUR 16008 EN. Office for Official Publications of the E.U. Luxembourg, 61–72

  • Pastor M, Orgaz F (1994) Riego deficitario del olivar: los programas de recorte de riego en olivar. Agricultura 746:768–776

    Google Scholar 

  • Rallo L (1994) Evaluacion agronomica y obtencion de nuevas variedades de olivo. Olivicultura 62:17–28

    Google Scholar 

  • Rapoport HF, Hammami S, Martins P, Pérez-Priego O, Orgaz F (2012) Influence of water deficits at different times during olive tree inflorescence and flower development. Environ Exp Bot 77:227–233. doi:10.1016/j.envexpbot.2011.11.021

    Article  Google Scholar 

  • Ribeiro H, Cunha M, Abreu I (2007) Improving early-season estimates of olive production using airborne pollen multi-sampling sites. Aerobiologia 23:71–78. doi:10.1007/s10453-007-9050-6

    Article  Google Scholar 

  • Ribeiro H, Cunha M, Abreu I (2008) Quantitative forecasting of olive yield in Northern Portugal using a bioclimatic model. Aerobiologia 24:141–150. doi:10.1007/s10453-008-9094-2

    Article  Google Scholar 

  • Sicard P, Thibaudon M, Besancenot J-P, Mangin A (2012) Forecast models and trends for the main features of the Olea pollen season in Nice (South-eastern France) over the 1990–2009 period. Grana 51:52–62. doi:10.1080/00173134.2011.637577

    Article  Google Scholar 

  • SSYA (2011) Spanish statistical yearbook of agriculture. Ministry of Agriculture, Food and Environment. http://www.magrama.gob.es/es/

  • Vázquez LM, Galán C, Domínguez-Vilches E (2003) Influence of meteorological parameters on olea pollen concentrations in Córdoba (South-western Spain). Int J Biometeorol 48(2):83–90. doi:10.1007/s00484-003-0187-x

    Article  PubMed  Google Scholar 

  • Vossen P (2007) Olive oil: history, production, and characteristics of the world’s classic oils. HortSci 42:1093–1100

    Google Scholar 

  • WGII IPCC Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007—impacts adaptation and vulnerability. IPCC, Cambridge

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the following projects for funding this work: “Análisis de la dinámica del polen atmosférico en Andalucía (P10-RNM-5958)”, Research Project of Excellence of the Andalusia Regional Government; “Impacto del Cambio Climático en la fenología de especies vegetales del centro y sur de la Península Ibérica, FENOCLIM (CGL 2011-24146)” of the Spanish Ministry of Science and Innovation, and to the project “Aplicación y optimización del análisis polínico en el desarrollo de modelos de previsión de cosecha en olivo en Túnez (11-CAP2-0932)” of the Spanish Cooperation and Development Agency (AECID). Authors also are grateful to Ramón Areces Fundation (Madrid, Spain) by the post-doctoral grant of Dr. Aguilera. We appreciate the special contribution of Dr. José Guerrero-Casado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Oteros.

About this article

Cite this article

Oteros, J., Orlandi, F., García-Mozo, H. et al. Better prediction of Mediterranean olive production using pollen-based models. Agron. Sustain. Dev. 34, 685–694 (2014). https://doi.org/10.1007/s13593-013-0198-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0198-x

Keywords

Navigation