Skip to main content
Log in

Lack of consideration for end-users during the design of agronomic models. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Agriculture should now provide not only high yields but also sustainable development with a sound management of the diversity of ecosystems. Due to this increased complexity of objectives, models have recently become major tools that can integrate several parameters. Failure to apply models outside research is however a major issue. Here, to identify the precise grounds of this failure, we analyzed what models are intended for by scientists during their design. We performed a literature analysis on agronomic modelling practices. Specifically, we analyzed 518 scientific article abstracts reporting either new models or improved existing models. Articles were published in eight mainstream agronomy journals over a 10-year period. We also analyzed 25 full-text contents randomly selected from the initial dataset. In order to assess how models match the uses they are intended for, we first analyzed the design methodology used to build models. Second, we studied how authors defined the potential use of models by analyzing both the claimed objectives and references to model use and users. We then compared our findings on design methodology with our findings on intended use. Our results first show that the design methodology for modelling is presented as a segmented and standardized process. Each article refers to one or more of the following six steps to describe the design process for modelling: (1) description of the model structure, inputs, outputs and validity domain, (2) description of the data used to build the model, (3) model formalism, (4) calibration parameterisation, (5) validation, and (6) application. We found that information about the design process like iterations, errors, improvements is never emphasized in the abstracts, whereas this information is sometimes quoted in the full-text contents. This finding demonstrates that the design methodology for modelling is not addressed as a research topic. Second, we show that whereas 88.8% of authors claim in their abstracts that the major objective of their models is to improve understanding as opposed to support action, 19.5% of authors also quote a possible use of their models outside research. The initial objective of understanding is thus extended to use the models as tools for action. Overall, we conclude that the agricultural research community is not highly concerned by the effects of the design methodology on the suitability of the model structure and on potential applications. Moreover, although the six steps of the design process may be appropriate for designing models devoted to improve understanding, no specific methods are proposed to design models for action. We did not find evidence that the modellers connect the design of the model with its use by end-users. We suggest that this issue could be solved by developing participatory methodology design involving end-users in model design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aguera, F., Villalobos, F., Orgaz, F., 1997. Evaluation of sunflower (Helianthus annuus, L.) genotypes differing in early vigour using a simulation model. Eur. J. Agron. 7, 109–118.

    Article  Google Scholar 

  • Alary, V., Nefzaoui, A., Ben Jemaa, M., 2007. Promoting the adoption of natural resource management technology in arid and semi-arid areas: modelling the impact of spineless cactus in alley cropping in Central Tunisia. Agric. Syst. 94, 573.

    Article  Google Scholar 

  • Amaducci, S., Colauzzi, M., Bellocchi, G., Venturi, G., 2008. Modelling post-emergent hemp phenology (Cannabis sativa L.): theory and evaluation. Eur. J. Agron. 28, 90–102.

    Article  Google Scholar 

  • Bacsi, Z., 1997. Modelling chaotic behaviour in agricultural prices using a discrete deterministic nonlinear price model. Agric. Syst. 55, 445.

    Article  Google Scholar 

  • Bastiaanssen, W., Ali, S., 2003. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 94, 321–340.

    Article  Google Scholar 

  • Berger, T., Schreinemachers, P., Woelcke, J., 2006. Multi-agent simulation for the targeting of development policies in less-favored areas. Agric. Syst. 88, 28–43.

    Article  Google Scholar 

  • Berntsen, J., Hauggard-Nielsen, H., Olesen, J., Petersen, B., Jensen, E., Thomsen, A., 2004. Modelling dry matter production and resource use in intercrops of pea and barley. Field Crops Res. 88, 69–83.

    Article  Google Scholar 

  • Bindi, M., Sinclair, T.R., Harrison, J., 1999. Analysis of seed growth by linear increase in harvest index. Crop Sci. 39, 486.

    Article  Google Scholar 

  • Bonhomme, R., 1997. Modélisation du fonctionnement d'une culture: caractérisation de la contrainte hydrique et prise en compte de ses effets. In: L'eau dans l'espace rural. Paris: INRA. pp. 85–100.

  • Boote, K., Jones, J., Pickering, N., 1996. Potential uses and limitations of crop models. Agron. J. 88, 704–716.

    Article  Google Scholar 

  • Bouman, B., vanKeulen, H., vanLaar, H., Rabbinge, R., 1996. The 'School of de Wit' crop growth simulation models: a pedigree and historical overview. Agric. Syst. 52, 171–198.

    Article  Google Scholar 

  • Cabelguenne, M., Debaeke, P., Bouniols, A., 1999. EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybean and winter wheat. Agric. Syst. 60, 175.

    Article  Google Scholar 

  • Cabrera, V., Hildebrand, P., Jones, J., 2005. Modelling the effect of household composition on the welfare of limited-resource farmers in Coastal Canete, Peru. Agric. Syst. 86, 207–222.

    Article  Google Scholar 

  • Carberry, P., Hochman, Z., McCown, R., Dalguiesh, N., Foale, M., Poulton, P., Hargeaves, J., Hargreaves, D., Cawthray, S., Hillcoat, N., Robertson, M., 2002. The FARMSCAPE approach to deicsion support: farmers', advisers', researchers' monitoring, simulation, communication and performance evaluation. Agric. Syst. 74, 141–177.

    Article  Google Scholar 

  • Cerf, M., Meynard, JM., 2006. Les outils de pilotage des cultures: diversité de leurs usages et enseignements pour leur conception. Natures Sciences Sociétés. 14, 19–29.

    Article  Google Scholar 

  • Cohen, A.M., Hersh, W.R., 2005. A survey of current work in biomedical text mining. Briefings in Bioinformatics 6, 57–71.

    Article  PubMed  CAS  Google Scholar 

  • Colbach N, Clermont-Dauphin C, Meynard J (2001) GENESYS: a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers - I. Temporal evolution of a population of rapeseed volunteers in a field. Agri Ecosys Environ 83:235

    Article  Google Scholar 

  • Cox, P., 1996. Some issues in the design of agricultural decision support systems. Agric. Syst. 52, 355–381.

    Article  Google Scholar 

  • de Wit C (1965) Photosynthesis of leaf canopies. In: Agricultural Research Report 663. Wageningen, PUDOC, p 57

    Google Scholar 

  • de Wit, C., 1978. Introduction. In: Simulation of assimilation, respiration and transpiration of crops. Wageningen: Centre for Agricultural Publishing and Documentation. pp. 1–5.

  • Debaeke, P., Estragnat, A., 2003. A simple model to interpret the effects of sunflower crop management on the occurrence and severity of a major fungal disease: phomopsis stem canker. Field Crops Res. 83, 139–155.

    Article  Google Scholar 

  • Dorst, K., 2008. Design research: a revolution-waiting-to-happen. Design Studies 29, 4–11.

    Article  Google Scholar 

  • Fountas, S., Wulfsohn, D., Blackmore, B., Jacobsen, H., Pedersen, S., 2006. A model of decision-making and information flows for information-intensive agriculture. Agric. Syst. 87, 192–210.

    Article  Google Scholar 

  • Girard, N., Hubert, B., 1999. Modelling expert knowledge with knowledge-based systems to design decision aids—the example of a knowledge-based model on grazing management. Agric. Syst. 59, 123–144.

    Article  Google Scholar 

  • Greiner, R., 1998. Catchment management for dryland salinity control: model analysis for the Liverpool plains in New South Wales. Agric. Syst. 56, 225.

    Article  Google Scholar 

  • Hammer, G., 1998. Crop modelling: current status and opportunities to advance. Acta Hortic. 456, 27–36.

    Google Scholar 

  • Hammer, G., Kropff, M., Sinclair, T., Porter, J., 2002. Future contributions of crop modelling—from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur. J. Agron. 18, 15–31.

    Article  Google Scholar 

  • Hanks, R., Ritchie, J., 1991. Introduction. In: modeling plant and soil systems, Agronomy Monograph n°31. Madison, WI: ASA, CSSA and SSSA. pp. 1–3.

    Google Scholar 

  • Hayman, P., Easdown, W., 2002. An ecology of a DSS: reflections on managing wheat crops in the northeastern Australian grains region with WHEATMAN. Agric. Syst. 74, 57–77.

    Article  Google Scholar 

  • Herve, D., Genin, D., Migueis, J., 2002. A modelling approach for analysis of agro pastoral activity at the one-farm level. Agric. Syst. 71, 187.

    Article  Google Scholar 

  • Higgins, A., Haynes, M., Muchow, R., Prestwidge, D., 2004. Developing and implementing optimised sugarcane harvest schedules through participatory research. Aust. J. Agric. Res. 55, 297–306.

    Article  Google Scholar 

  • Janssen, S., van Ittersum, M., 2007. Assessing farm innovations and responses to policies: a review of bio-economic farm models. Agric. Syst 94, 622–636.

    Article  Google Scholar 

  • Jeuffroy, MH., 2009. Dynamiques partenariales dans une démarche de modélisation. In: Béguin P, Cerf M (Eds) Dynamique des savoirs, Dynamiques des changements. Octarès Editions, Toulouse (France), pp 191–208.

    Google Scholar 

  • Jones, J., Luyten, J., 1998. Simulation of biological processes. In: agricultural systems modeling and simulation. New York: Marcel Dekker. pp. 19–62.

    Google Scholar 

  • Jones, J., Keating, B., Porter, C., 2001. Approaches to modular model development. Agric. Syst. 70, 421–443.

    Article  Google Scholar 

  • Keating, B., McCown, R., 2001. Advances in farming systems analysis and intervention. Agric. Syst. 70, 555–579.

    Article  Google Scholar 

  • Kensing, F., Blomberg, J., 1998. Participatory design: issues and concerns. Comp Supp Coop Work 7, 167–185.

    Article  Google Scholar 

  • Lecomte, C., Prost, L., Cerf, M., Meynard, JM., 2010. Basis for designing a tool to evaluate new cultivars. Agron. Sustain. Dev. 30, 667–677.

    Article  Google Scholar 

  • Lynch, T., Gregor, S., Midmore, D., 2000. Intelligent support systems in agriculture: how can we do better? Aust. J. Agric. Res. 40, 609–620.

    Article  Google Scholar 

  • Matthews, R., Stephens, W., Hess, T., Middleton, T., Graves, A., 2002. Applications of crop/soil simulation models in tropical agricultural systems. Advances in Agronomy 76, 31–124.

    Article  Google Scholar 

  • McCown, R.L., 2001. Learning to bridge the gap between science-based decision support and the practice of farming: evolution in paradigms of model-based research and intervention form design to dialogue. Aust. J. Agric. Res. 52, 549–571.

    Article  Google Scholar 

  • McCown, R., Parton, K., 2006. Learning from the historical failure of farm management models to aid management practices. Part 2. Three systems approaches. Aust. J. Agric. Res. 57, 157–172.

    Article  Google Scholar 

  • McCown, R., Hammer, G., Hargreaves, J., Holzworth, D., Freebairn, D., 1996. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 50, 255–271.

    Article  Google Scholar 

  • Meynard, J., Cerf, M., Guichard, L., Jeuffroy, M., Makowski, D., 2002. Which decision support tools for the environmental management of nitrogen? AGRONOMIE 22, 817–829.

    Article  Google Scholar 

  • Monteith, J., 1996. The quest for balance in crop modeling. Agron. J. 88, 695–697.

    Article  Google Scholar 

  • Navarrete, M., Le Bail, M., 2007. SALADPLAN: a model of the decision-making process in lettuce and endive cropping. Agron. Sustain. Dev. 27, 209–221.

    Article  Google Scholar 

  • Parker, C., 1999. Decision support systems: lessons from past failures. Farm Management 10, 273–289.

    Google Scholar 

  • Parker, C., 2004. Decision support tools: barriers to uptake and use. Aspects of Applied Biology 72, 31–41.

    Google Scholar 

  • Passioura, J., 1996. Simulation models: science; snake oil, education, or engineering? Agron. J. 88, 690–694.

    Article  Google Scholar 

  • Peart, R., Curry, R., 1998. Preface. In: Agricultural systems modeling and simulation. New York: Marcel Dekker. pp. iii-viii.

    Google Scholar 

  • Penning de Vries, F., Jansen, D., ten Berge, H., Bakema, A., 1989. Introduction to crop growth modelling. In: Simulation of ecophysiological processes of growth in several annual crops. Wageningen: PUDOC. pp. 1–25.

    Google Scholar 

  • Personne, E., Perrier, A., Tuzet, A., 2003. Simulating water uptake in the root zone with a microscopic-scale model of root extraction. Agronomie 23, 153–168.

    Article  Google Scholar 

  • Poluektov, R., Topaj, A., 2001. Crop modeling: nostalgia about present or reminiscence about future. Agron. J. 93, 653–659.

    Article  Google Scholar 

  • Rapidel, B., Defeche, C., Traore, B., Lancon, J., Wery, J., 2006. In-field development of a conceptual crop functioning and management model: a case study on cotton in southern Mali. Eur. J. Agron. 24, 304–315.

    Article  Google Scholar 

  • Riesgo, L., Gomez-Limon, J., 2006. Multi-criteria policy scenario analysis for public regulation of irrigated agriculture. Agric. Syst. 91, 1–28.

    Article  Google Scholar 

  • Ristic, Z., Bukovnik, U., Prasad, P., West, M., 2008. A model for prediction of heat stability of photosynthetic membranes. Crop Sci. 48, 1513–1522.

    Article  Google Scholar 

  • Roche, R., Jeuffroy, M., 2000. A model to calculate the vertical distribution of grain number in pea. Agron. J. 92, 663–671.

    Article  Google Scholar 

  • Salman, A., Al-Karablieh, E., Fisher, F., 2001. An inter-seasonal agricultural water allocation system (SAWAS). Agric. Syst. 68, 233–252.

    Article  Google Scholar 

  • Schuemie, M.J., Weeber, M., Schijvenaars, B.J.A., van Mulligen, E.M., van der Eijk, C.C., Jelier, R., Mons, B., Kors, J.A., 2004. Distribution of information in biomedical abstracts and full-text publications. Bioinformatics 20, 2597–2604.

    Article  PubMed  CAS  Google Scholar 

  • Setiyono, T., Weiss, A., Specht, J., Bastidas, A., Cassman, K., Dobermann, A., 2007. Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions. Field Crops Res. 100, 257–271.

    Article  Google Scholar 

  • Sinclair, T., Seligman, N., 1996. Crop modeling: from infancy to maturity. Agron. J. 88, 698–704.

    Article  Google Scholar 

  • Sinclair, T., Seligman, N., 2000. Criteria for publishing papers on crop modeling. Field Crops Research 68, 165–172.

    Article  Google Scholar 

  • Taverne, M., Cerf, M., 2009. Anticiper l’usage dans un projet de conception d’un outil d’aide à la décision pour lutter contre le sclerotinia du Colza : quelles interactions entre utilisateurs et concepteurs et comment évaluer leurs apports ? In: Hubert B, de Turckheim E, Messean A (Eds) Concevoir et construire la décision : démarches en agriculture, agro-alimentaire, et espace rural. Paris : Editions QUAE.

    Google Scholar 

  • Tixier, P., Malezieux, E., Dorel, M., Wery, J., 2008. SIMBA, a model for designing sustainable banana-based cropping systems. Agric. Syst. 97, 139–150.

    Article  Google Scholar 

  • Uehara, G., Tsuji, G., 1998. Overview of IBSNAT. In: Tsuji, G, Hoogenboom, G, Thornton, P (eds.). Understanding options for agricultural production. Dordrecht, the Netherlands: Kluwer Academic Publisher. pp. 1–7.

  • van Oosterom, E., Carberry, P., Hargreaves, J., O'Leary, G., 2001a. Simulating growth, development, and yield of tillering pearl millet II. Simulation of canopy development. Field Crops Res. 72, 67–91.

    Article  Google Scholar 

  • van Oosterom, E., Carberry, P., O'Leary, G., 2001b. Simulating growth, development, and yield of tillering pearl millet I. Leaf area profiles on main shoots and tillers. Field Crops Res. 72, 51–66.

    Article  Google Scholar 

  • van Oosterom, E., O'Leary, G., Carberry, P., Craufurd, P., 2002. Simulating growth, development, and yield of tillering pearl millet. III. Biomass accumulation and partitioning. Field Crops Res. 79, 85–106.

    Article  Google Scholar 

  • Whistler, F., Acock, B., Baker, D., Fye, R., Hodges, H., Lambert, J., Lemmon, H., mcKinion, J., Reddy, V., 1986. Crop simulation models in agronomic systems. Adv. Agron. 40, 142–208.

    Google Scholar 

  • Woodward, S., Romera, A., Beskow, W., Lovatt, S., 2008. Better simulation modelling to support farming systems innovation: review and synthesis. New Zealand Journal of Agricultural Research 51, 235–252.

    Article  Google Scholar 

  • Yoshida, H., Horie, T., Shiraiwa, T., 2006. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crops Res. 97, 337–343.

    Article  Google Scholar 

  • Zhang, H., Brandle, J., 1996. Windbreak effect on biomass and grain mass accumulation of corn: a modeling approach. Agron. J. 88, 607–613.

    Article  Google Scholar 

  • Zhang, B., Valentine, I., Kemp, P., 2005. A decision tree approach modelling functional group abundance in a pasture ecosystem. Agric. Ecosyst. Environ. 110, 279–288.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the FSOV (Fonds de soutien à l’obtention végétale–French fund for plant breeding). We thank Dr. Marc Barbier for his methodological help about quantitative bibliography and Alan Scaife for correcting the English language. We thank our colleagues of the research unit SenS (INRA UR 1326) for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorène Prost.

About this article

Cite this article

Prost, L., Cerf, M. & Jeuffroy, MH. Lack of consideration for end-users during the design of agronomic models. A review. Agron. Sustain. Dev. 32, 581–594 (2012). https://doi.org/10.1007/s13593-011-0059-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0059-4

Keywords

Navigation