Skip to main content

Advertisement

Log in

Agroecosystem management and biotic interactions: a review

  • Review Paper
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Increasing the use of synthetic fertilisers and pesticides in agroecosystems has led to higher crop yields, accompanied by a decline in biodiversity at the levels of field, cropping system and farm. Biodiversity decline has been favoured by changes at landscape level such as regional farm specialisation, increases in field size, and the removal of hedgerows and woodlots. The loss of biodiversity in agroecosystems has increased the need for external inputs because beneficial functions are no longer provided by beneficial species as natural enemies of crop pests and ecosystem engineers. This trend has led to a strong reliance on petrochemicals in agroecosystems. However, many scientists have been arguing for more than two decades that this reliance on petrochemicals could be considerably reduced by a better use of biotic interactions. This article reviews options to increase beneficial biotic interactions in agroecosystems and to improve pest management and crop nutrition whilst decreasing petrochemical use. Four agronomic options are presented. First, it has been shown that the choice of cultivar, the sowing date and nitrogen fertilisation practices can be manipulated to prevent interactions between pests and crop, in either time or space. Nevertheless, the efficacy of these manipulations may be limited by pest adaptation. Second, beneficial biotic interactions may result from appropriate changes to the habitats of natural enemies and ecosystem engineers, mediated by soil and weed management. Here, knowledge is scarce, and indirect and complex effects are poorly understood. Third, changes achieved by crop diversification and, fourth, by landscape adaptation are promising. However, these practices also present drawbacks that may not necessarily be outweighed by beneficial effects. Overall, these four management approaches provide a powerful framework to develop sustainable agronomic practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahuja I, Rohloff J, Bones AM (2010) Defence mechanisms of Brassicaceae: implications for plant–insect interactions and potential for integrated pest management. A review. Agron Sustain Dev 30:311–348. doi:10.1051/agro/2009025

    Google Scholar 

  • Aira M, Monroy F, Dominguez J (2003) Effects of two species of earthworms (Allolobophora spp.) on soil systems: a microfaunal and biochemical analysis. Pedobiologia 47:877–881. doi:10.1078/0031-4056-00274

    Google Scholar 

  • Alford DV, Nilsson C, Ulber B (2003) Insect pests of oilseed rape crops. In: Alford DV (ed) Biocontrol of oilseed rape pests. Blackwell Science, Oxford, pp 9–41

    Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31. doi:10.1016/S0167-8809(99)00028-6

    Google Scholar 

  • Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–211. doi:10.1016/S0167-1987(03)00089-8

    Google Scholar 

  • Altieri MA, Schmidt LL (1986) The dynamics of colonizing arthropod communities at the interface of abandoned, organic and commercial apple orchards and adjacent woodland habitats. Agric Ecosyst Environ 16:29–43. doi:10.1016/0167-8809(86)90073-3

    Google Scholar 

  • Altieri MA, Wilson RC, Schmidt LL (1985) The effects of living mulches and weed cover on the dynamics of foliage- and soil-arthropod communities in three crop systems. Crop Prot 4:201–213. doi:10.1016/0261-2194(85)90018-3

    Google Scholar 

  • Alvear M, Rosas A, Rouanet JL, Borie F (2005) Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil Tillage Res 82:195–202. doi:10.1016/j.still.2004.06.002

    Google Scholar 

  • Anderson JM, Ineson P, Huish SA (1983) Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic matter from deciduous woodlands. Soil Biol Biochem 15:463–467. doi:10.1016/0038-0717(83)90012-3

    Google Scholar 

  • Andow DA (1986) Plant diversification and insect population control in agroecosystems. In: Pimentel DE (ed) Some aspects of integrated pest management. Cornell University Press, Ithaca, pp 277–368

    Google Scholar 

  • Andow DA (1990) Population dynamics of an insect herbivore in simple and diverse habitats. Ecology 72:1006–1017

    Google Scholar 

  • Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586. doi:10.1146/annurev.en.36.010191.003021

    Google Scholar 

  • Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM (1994) Biofumigation—isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant Soil 162:107–112. doi:10.1007/BF01416095

    CAS  Google Scholar 

  • Anonymous (2005) Millennium ecosystem assessment. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Aquilino KM, Cardinale BJ, Ives AR (2005) Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system. Oikos 108:275–282. doi:10.1111/j.0030-1299.2005.13418

    Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. PNAS 100:15649–15654. doi:10.1073/pnas.2533483100

    PubMed  CAS  Google Scholar 

  • Ateh CM, Doll JD (1996) Spring-planted winter rye (Secale cereale) as a living mulch to control weeds in soybean (Glycine max). Weed Technol 10:347–353

    Google Scholar 

  • Aubertot JN, Pinochet X, Doré T (2004) Analysis of the effects of sowing date and nitrogen availability during vegetative stages on phoma stem canker (Leptosphaeria maculans) development on two winter oilseed rape cultivars. Crop Prot 23:635–645. doi:10.1016/j.cropro.2003.11.015

    Google Scholar 

  • Baguette M, van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22:1117–1129. doi:10.1007/s10980-007-9108-4

    Google Scholar 

  • Bailly R, Mamarot J, Psarski P (1977) Mauvaises herbes des grandes cultures: 69 espèces importantes présentées au stade plantule. ACTA, Paris

    Google Scholar 

  • Balachowsky AS (1962) Traité d’entomologie appliquée à l’agriculture. Tome I, Coléoptère, vol 1. Masson et Cie, Paris

  • Ball BC, Cheshire MV, Robertson EAG, Hunter EA (1996) Carbohydrate composition in relation to structural stability, compactibility and plasticity of two soils in a long-term experiment. Soil Tillage Res 39:143–160. doi:10.1016/S0167-1987(96)01067-7

    Google Scholar 

  • Barari H, Cook S, Clark SJ, Williams IH (2005) Effect of a turnip rape (Brassica rapa) trap crop on stem-mining pests and their parasitoids in winter oilseed rape (Brassica napus). Biocontrol 50:69–86

    Google Scholar 

  • Bastiaans L, Paolini R, Baumann DT (2002) Integrated crop management: opportunities and limitations for prevention of weed problems. Proceedings of the 12th EWRS (European Weed Research Society) Symposium 2002, Wageningen, pp 8–9

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trend Ecol Evol 18:182–188. doi:10.1016/S0169-5347(03)00011-9

    Google Scholar 

  • Berndt LA, Wratten SD, Scarratt SL (2006) The influence of floral resource subsidies on parasitism rates of leafrollers (Lepidoptera: Tortricidae) in New Zealand vineyards. Biol Control 37:50–55. doi:10.1016/j.biocontrol.2005.12.005

    Google Scholar 

  • Bhuiyan MSI, Wratten SD (1994) Grain aphid populations and their fall-off rate on different cultivars of wheat. IOBC/WPRS Bull 17:27–35

    Google Scholar 

  • Bianchi FJJA, Wäckers FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46:400–408. doi:10.1016/j.biocontrol.2008.04.010

    Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Roy Soc London Ser B 273:1715–1727. doi:10.1098/rspb.2006.3530

    CAS  Google Scholar 

  • Bjorkman M, Hamback PA, Ramert B (2007) Neighbouring monocultures enhance the effect of intercropping on the turnip root fly (Delia floralis). Entomol Exp Appl 124:319–326. doi:10.1111/j.1570-7458.2007.00589.x

    Google Scholar 

  • Boiffin J, Malezieux E, Picard D (2001) Cropping systems for the future. In: Nösberger J, Geiger HH, Struik PC (eds) Crop science: progress and prospects. CABI Publishing, New York, pp 261–279

    Google Scholar 

  • Borek V, Morra MJ (2005) Ionic thiocyanate (SCN-) production from 4-hydroxybenzyl glucosinolate contained in Sinapis alba seed meal. J Agric Food Chem 53:8650–8654. doi:10.1021/jf051570r

    PubMed  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744. doi:10.1128/AEM.02188-07

    PubMed  CAS  Google Scholar 

  • Broekgaarden C, Poelman EH, Steenhuis G, Voorrips RE, Dicke M, Vosman B (2008) Responses of Brassica oleracea cultivars to infestation by the aphid Brevicoryne brassicae: an ecological and molecular approach. Plant Cell Environ 31:1592–1605. doi:10.1111/j.1365-3040.2008.01871.x

    PubMed  CAS  Google Scholar 

  • Brunin B, Lacoste L (1970) Recherches sur la maladie du colza due à Leptosphaeria maculans (Desm.) Ces. & de Not. II. Pouvoir pathogène des ascospores. Ann Phytopathol 2:477–488

    Google Scholar 

  • Brust GE (1994) Natural enemies in straw-mulch reduce Colorado potato beetle populations and damage in potato. Biol Control 4:163–169. doi:10.1006/bcon.1994.1026

    Google Scholar 

  • Büchi R (2002) Mortality of pollen beetle (Meligethes spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agric Ecosyst Environ 90:255–263. doi:10.1016/S0167-8809(01)00213-4

    Google Scholar 

  • Buck C, Langmaack M, Schrader S (2000) Influence of mulch and soil compaction on earthworm cast properties. Appl Soil Ecol 14:223–229. doi:10.1016/S0929-1393(00)00054-8

    Google Scholar 

  • Bugg RL, Pickett CH (1998) Introduction: enhancing biological control—habitat management to promote natural enemies of agricultural pests. In: Pickett CH, Bugg RL (eds) Enhancing biological control. Habitat management to promote natural enemies of agricultural pests. University of California Press, Berkeley, pp 1–23

    Google Scholar 

  • Buhler DD, Kohler KA, Foster MS (2001) Corn, soybean, and weed responses to spring-seeded smother plants. J Sustain Agr 18:63–79. doi:10.1300/J064v18n04_08

    Google Scholar 

  • Burdon JJ, Ericson L, Muller WJ (1995) Temporal and spatial changes in a metapopulation of the rust pathogen Triphragmium ulmariae and its host, Filipendula ulmaria. J Ecol 83:979–989

    Google Scholar 

  • Campbell CL, Long DL (2001) The campaign to eradicate the common barberry in the United States. In: Peterson PD (ed) Stem rust of wheat. From ancient enemy to modern foe. APS Press, St. Paul, pp 16–50

    Google Scholar 

  • Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6:857–865. doi:10.1046/j.1461-0248.2003.00508.x

    Google Scholar 

  • Carof M, de Tourdonnet S, Coquet Y, Hallaire V, Roger-Estrade J (2007a) Hydraulic conductivity and porosity under conventional and no-tillage and the effect of three species of cover crop in northern France. Soil Use Manage 23:230–237. doi:10.1111/j.1475-2743.2007.00085.x

    Google Scholar 

  • Carof M, de Tourdonnet S, Saulas P, Le Floch D, Roger-Estrade J (2007b) Undersowing wheat with different living mulches in a no-till system (II): competition for light and nitrogen. Agron Sustain Dev 27:357–365. doi:10.1051/agro:2007017

    Google Scholar 

  • Carvell C, Meek RW, Pywell RF, Goulson D, Nowakowski M (2007) Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. J App Ecol 44(1):29–40. doi:10.1111/j.1365-2664.2006.01249.x

    Google Scholar 

  • Chan KY (2001) An overview of some tillage impacts on earthworm population abundance and diversity—implications for functioning in soils. Soil Tillage Res 57:179–191. doi:10.1016/S0167-1987(00)00173-2

    Google Scholar 

  • Chang GC, Eigenbrode SD (2004) Delineating the effects of a plant trait on interactions among associated insects. Oecologia 139:123–130. doi:10.1007/s00442-003-1485-z

    PubMed  Google Scholar 

  • Chauvel B, Guillemin JP, Colbach N, Gasquez J (2001) Evaluation of cropping systems for management of herbicide resistant populations of blackgrass (Alopecurus myosuroides Huds). Crop Prot 20:127–137. doi:10.1016/S0261-2194(00)00065-X

    Google Scholar 

  • Chen BR, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772. doi:10.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;2

    Google Scholar 

  • Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. Soil Sci Soc Am J 64:1479–1486

    CAS  Google Scholar 

  • Cluzeau D, Lebouvier M, Trehen P, Bouché MB, Badour C, Perraud A (1987) Relations between earthworms and agricultural practices in the vineyards of Champagne: preliminary results. In: Bonvicini Pagliai AM, Omodeo P (eds) On earthworms. Mucchi, Modena, pp 465–484

    Google Scholar 

  • Cluzeau D, Guo ZT, Chaussod D, Fedoroff N, Normand M, Perraud A (1994) Interaction between soil, biological activities and organic matter enrichments in Champagne soils. Transactions of the XV World Congress of Soil Sc. INEG and CNA publishing, Mexico, 4b, pp 149–150

  • Colignon P, Francis F, Fadeur G, Haubruge E (2004) Management of the floristic composition of agroenvironmental mixtures with the aim of increasing beneficial insect populations. Parasitica 60:51–66

    Google Scholar 

  • Coll M, Bottrell DG (1995) Predator-prey association in monocultures and dicultures—effect of maize and bean vegetation. Agric Ecosyst Environ 54:115–125. doi:10.1016/0167-8809(95)00582-D

    Google Scholar 

  • Cook RJ (1995) Molecular mechanisms of defence by rhizobacteria against root disease. PNAS 92:4197–4201

    PubMed  CAS  Google Scholar 

  • Cook SM, Bartlet E, Murray DA, Williams IH (2002) The role of pollen odour in the attraction of pollen beetles to oilseed rape flowers. Entomol Exp Appl 104:43–50. doi:10.1023/A:1021294420847

    CAS  Google Scholar 

  • Cook SM, Smart LE, Martin JL, Murray DA, Watts NP, Williams IH (2006) Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus). Entomol Exp Appl 119:221–229. doi:10.1111/j.1570-7458.2006.00419.x

    Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push–pull strategies in integrated pest management. Ann Rev Entom 52:375–400. doi:10.1146/annurev.ento.52.110405.091407

    PubMed  CAS  Google Scholar 

  • Corbett A, Rosenheim JA (1996) Impact of a natural enemy overwintering refuge and its interaction with the surrounding landscape. Ecol Entomol 21:155–164. doi:10.1111/j.1365-2311.1996.tb01182.x

    Google Scholar 

  • Costamagna AC, Landis DA (2006) Predators exert top-down control of soybean aphid across a gradient of agricultural management systems. Ecol Appl 16:1619–1628. doi:10.1890/1051-0761(2006)016[1619:PETCOS]2.0.CO;2

    PubMed  Google Scholar 

  • Costello M, Altieri MA (1995) Abundance, growth rate and parasitism of Brevicoryne brassicae and Myzus persicae (Homoptera: Aphididae) on broccoli grown in living mulches. Agric Ecosyst Environ 52:187–196. doi:10.1016/0167-8809(94)00535-M

    Google Scholar 

  • Cresswell HP, Kirkegaard JA (1995) Subsoil amelioration by plant roots—the process and the evidence. Aust J Soil Res 33:221–239. doi:10.1071/SR9950221

    Google Scholar 

  • Curry JP (1998) Factors affecting earthworm abundance in soils. In: Edwards CA (ed) Earthworm ecology. St. Lucie Press, Boca Raton, p 389

    Google Scholar 

  • de Jong R, Städler E (1999) The influence of odour on the oviposition behaviour of the cabbage root fly. Chemoecology 9:151–154. doi:10.1007/s000490050047

    Google Scholar 

  • Dejoux JF, Ferré F, Meynard JM (1999) Effects of sowing date and nitrogen availability on competitivity of rapeseed against weeds in order to develop new strategies of weed control with reduction of herbicide use. 10th International Rapeseed Congress, Canberra, Australia

  • Dejoux JF, Meynard JM, Reau R, Roche R, Saulas P (2003) Evaluation of environmentally friendly crop management systems based on very early sowing dates for winter oilseed rape in France. Agronomie 23:725–736. doi:10.1051/agro:2003050

    Google Scholar 

  • Denys C, Tscharntke T (2002) Plant–insect communities and predator–prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia 130:315–324. doi:10.1007/s004420100796

    Google Scholar 

  • Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, Kogel-Knabner I (2005) Carbon and nitrogen stocks in physical fractions of a subtropical Acrisol as influenced by long-term no-till cropping systems and N fertilisation. Plant Soil 268:319–328. doi:10.1007/s11104-004-0330-4

    CAS  Google Scholar 

  • Dosdall LM, Herbut MJ, Cowle NT, Micklich TM (1996) The effect of seeding date and plant density on infestations of root maggots, Delia spp. (Diptera: Anthomyiidae), in canola. Can J Plant Sci 76:169–177

    Google Scholar 

  • Dunning JB, Danielson JB, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. OIKOS 65:169–175

    Google Scholar 

  • Dyer LE, Landis DA (1996) Effects of habitat, temperature, and sugar availability on longevity of Eriborus terebrans (Hymenoptera: Ichneumonidae). Environ Entomol 25:1192–1201

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Ellis JA, Walter AD, Tooker JF, Ginzel MD, Reagel PF, Lacey ES, Bennett AB, Grossman EM, Hanks LM (2005) Conservation biological control in urban landscapes: manipulating parasitoids of bagworm (Lepidoptera: Psychidae) with flowering forbs. Biol Control 34:99–107. doi:10.1016/j.biocontrol.2005.03.020

    Google Scholar 

  • Ericson L, Burdon JJ, Muller WJ (1999) Spatial and temporal dynamics of epidemics of the rust fungus Uromyces valerianae on populations of its host Valeriana salina. J Ecol 87:649–658

    Google Scholar 

  • Farwig N, Bailey D, Bochud E, Herrmann JD, Kindler E, Reusser N, Schüepp C, Schmidt-Entling MH (2009) Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landsc Ecol 24:919–927. doi:10.1007/s10980-009-9376-2

    Google Scholar 

  • Ferguson SH, Joly DO (2002) Dynamics of springtail and mite populations: the role of density dependence, predation, and weather. Ecol Entomol 27:565–573. doi:10.1046/j.1365-2311.2002.00441.x

    Google Scholar 

  • Finch S, Collier RH (2000) Host-plant selection by insects—a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol Exp Appl 96:91–102. doi:10.1023/A:1004058518179

    Google Scholar 

  • Frank T, Nentwig W (1995) Ground dwelling spiders (Araneae) in sown weed strips and adjacent fields. Acta Oecol 16:179–193

    Google Scholar 

  • Frank T, Kehrli P, Germann C (2007) Density and nutritional condition of carabid beetles in wildflower areas of different age. Agric Ecosyst Environ 120:377–383. doi:10.1016/j.agee.2006.10.012

    Google Scholar 

  • Free JB, Williams IH (1978) The response of pollen beetle, Meligethes aeneus, and the seed weevil, Ceutorhynchus assimilis, to oilseed rape Brassica napus, and other plants. J Appl Ecol 15:761–774

    Google Scholar 

  • Fuente Ldl, Landa BB, Weller DM (2006) Host crop affects rhizosphere colonization and competitiveness of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 96:751–762. doi:10.1094/PHYTO-96-0751

    Google Scholar 

  • Funderburk JE, Rhoads FM, Teare ID (1994) Modifying soil nutrient level affects soybean insect predators. Agron J 86:581–585

    Google Scholar 

  • Gianoli E, Ramos I, Alfaro-Tapia A, Valdez Y, Echegaray ER, Yabar E (2006) Benefits of a maize–bean–weeds mixed cropping system in Urubamba Valley, Peruvian Andes. Int J Pest Manage 52:283–289. doi:10.1080/09670870600796722

    Google Scholar 

  • Gilligan CA (2002) An epidemiological framework for disease management. Adv Bot Res 38:1–64

    Google Scholar 

  • Gilligan CA (2008) Sustainable agriculture and plant diseases: an epidemiological perspective. Phil Trans R Soc Lond B 363:741–759. doi:10.1098/rstb.2007.2181

    Google Scholar 

  • Gladders P, Musa TM (1980) Observations on the epidemiology of L. maculans stem canker in winter oilseed rape. Plant Pathol 29:28–37. doi:10.1111/j.1365-3059.1980.tb01134.x

    Google Scholar 

  • Gowling GR (1988) Interaction of partial plant resistance and biological control. Asp Appl Biol 17:253

    Google Scholar 

  • Gowling GR, van Emden HF (1994) Falling aphids enhance impact of biological control by parasitoids on partially aphid-resistant plant varieties. Ann Appl Biol 125:233–242. doi:10.1111/j.1744-7348.1994.tb04965.x

    Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12. doi:10.1111/j.1365-2389.2005.00778.x

    Google Scholar 

  • Gubbins S, Gilligan CA, Kleczkowski A (2000) Population dynamics of plant–parasite interactions: thresholds for invasion. Theor Pop Biol 57:219–233. doi:10.1006/tpbi.1999.1441

    CAS  Google Scholar 

  • Gurr GM, Wratten SD, Luna JM (2003) Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl Ecol 4:107–116. doi:10.1078/1439-1791-00122

    Google Scholar 

  • Haddad NM, Tilman D, Haarstad J, Ritchie ME, Knops JMH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35. doi:10.1086/320866

    PubMed  CAS  Google Scholar 

  • Häni FJ, Boller EF, Keller S (1998) Natural regulation at the farm level. In: Pickett CH, Bugg RL (eds) Enhancing biological control—habitat management to promote natural enemies of agricultural pests. University of California Press, Berkeley, pp 161–210

    Google Scholar 

  • Hanna R, Zalom FG, Roltsch WJ (2003) Relative impact of spider predation and cover crop on population dynamics of Erythroneura variabilis in a raisin grape vineyard. Entomol Exp Appl 107:177–191. doi:10.1046/j.1570-7458.2003.00051.x

    Google Scholar 

  • Harmon JP, Hladilek EE, Hinton JL, Stodola TJ, Andow DA (2003) Herbivore response to vegetational diversity: spatial interaction of resources and natural enemies. Popul Ecol 45:75–81. doi:10.1007/s10144-003-0146-8

    Google Scholar 

  • Harrison SK, Regnier EE, Schmoll JT (2003) Postdispersal predation of giant ragweed (Ambrosia trifida) seed in no-tillage corn. Weed Sci 51:955–964. doi:10.1614/P2002-110

    CAS  Google Scholar 

  • Hartwig NL, Ammon HU (2002) Cover crops and living mulches. Weed Sci 50:688–699. doi:10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2

    CAS  Google Scholar 

  • Hatfield KL, Prueger JH (1996) Microclimate effects of crop residues on biological processes. Theor Appl Climatol 54:47–59. doi:10.1007/BF00863558

    Google Scholar 

  • Hausammann A (1996) Strip-management in rape crop: is winter rape endangered by negative impacts of sown weed strips? J Appl Entomol 120:505–512. doi:10.1111/j.1439-0418.1996.tb01643.x

    Google Scholar 

  • Henderson CWL (1989) Lupin as a biological plough: evidence for, and effects on wheat growth and yield. Aust J Exp Agric 29:99–102. doi:10.1071/EA9890099

    Google Scholar 

  • Hendrix PF, Muller BR, Bruce RR, Langdale GW, Parmelee RW (1992) Abundance and distribution of earthworms in relation to landscape factors on the Georgia Piedmont, USA. Soil Biol Biochem 24:1357–1361. doi:10.1016/0038-0717(92)90118-H

    Google Scholar 

  • Hickman JM, Wratten SD (1996) Use of Phacelia tanacetifolia strips to enhance biological control of aphids by hover fly larvae in cereal fields. J Econ Entomol 89:832–840

    Google Scholar 

  • Hoagland L, Carpenter-Boggs L, Reganold JP, Mazzola M (2008) Role of native soil biology in Brassicaceous seed meal-induced weed suppression. Soil Biol Biochem 40:1689–1697. doi:10.1016/j.soilbio.2008.02.003

    CAS  Google Scholar 

  • Hokkanen HMT (1989) Biological and agrotechnical control of the rape blossom beetle Meligethes aeneus (Coleoptera, Nitidulidae). Acta Entomol Fenn 53:25–29

    Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25. doi:10.1016/j.agee.2003.12.018

    Google Scholar 

  • Hollander NGd, Bastiaans L, Kropff MJ (2007a) Clover as a cover crop for weed suppression in an intercropping design: I. Characteristics of several clover species. Eur J Agron 26:92–103. doi:10.1016/j.eja.2006.08.011

    Google Scholar 

  • Hollander NGd, Bastiaans L, Kropff MJ (2007b) Clover as a cover crop for weed suppression in an intercropping design: II. Competitive ability of several clover species. Eur J Agron 26:104–112. doi:10.1016/j.eja.2006.08.005

    Google Scholar 

  • Hooks CRR, Johnson MW (2003) Impact of agricultural diversification on the insect community of cruciferous crops. Crop Prot 22:223–238. doi:10.1016/S0261-2194(02)00172-2

    Google Scholar 

  • Hopkins RJ, Ekbom B (1996) Low oviposition stimuli reduce egg production in the pollen beetle Meligethes aeneus. Physiol Entomol 21:118–122. doi:10.1111/j.1365-3032.1996.tb00843.x

    Google Scholar 

  • Hopkins RJ, Ekbom B (1999) The pollen beetle, Meligethes aeneus, changes egg production rate to match host quality. Oecologia 120:274–278. doi:10.1007/PL00008823

    Google Scholar 

  • Hornby D (1998) Take-all disease of cereals: a regional perspective. CAB International, Oxon

    Google Scholar 

  • Hu S, Coleman DC, Beare MH, Hendrix PF (1995) Soil carbohydrates in aggrading and degrading agroecosystems: influences of fungi and aggregates. Agric Ecosyst Environ 54:77–88. doi:10.1016/0167-8809(95)00588-J

    CAS  Google Scholar 

  • Hurter J, Ramp T, Patrian B, Stadler E, Roessingh P, Baur R, de Jong R, Nielsen JK, Winkler T, Richter WJ, Muller D, Ernst B (1999) Oviposition stimulants for the cabbage root fly: isolation from cabbage leaves. Phytochemistry 51:377–382. doi:10.1016/S0031-9422(99)00062-X

    CAS  Google Scholar 

  • Hyvönen T (2007) Can conversion to organic farming restore the species composition of arable weed communities? Biol Cons 137:382–390. doi:10.1016/j.biocon.2007.02.021

    Google Scholar 

  • Hyvönen T, Kejota E, Salonen J, Jalli H, Tiainen J (2003) Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agric Ecosyst Environ 97:131–149. doi:10.1016/S0167-8809(03)00117-8

    Google Scholar 

  • Inderjit, Keating KI (1999) Allelopathy: principles, procedures, processes, and promises for biological control. Adv Agron 67:141–231

    CAS  Google Scholar 

  • Jégou D, Brunotte J, Rogasik H, Capowiez Y, Diestel H, Schrader S, Cluzeau D (2002) Impact of soil compaction on earthworm burrow systems using X-ray computed tomography: preliminary study. Eur J Soil Biol 38:329–336. doi:10.1016/S1164-5563(02)01148-2

    Google Scholar 

  • Jervis MA, Kidd NAC, Fitton MG, Huddleston T, Dawah HA (1993) Flower-visiting by hymenopteran parasitoids. J Nat Hist 27:67–105. doi:10.1080/00222939300770051

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Jönsson M, Lindkvist A, Anderson P (2005) Behavioural responses in three ichneumonid pollen beetle parasitoids to volatiles emitted from different phenological stages of oilseed rape. Entomol Exp Appl 115:363–369

    Google Scholar 

  • Joshi J, Otway SJ, Koricheva J, Pfisterer AB, Alphei J, Roy BA, Scherer-Lorenzen M, Schmid B, Spehn EM, Hector A (2004) Bottom-up effects and feedbacks in simple and diverse experimental plant communities. In: Weisser WW, Seimann E (eds) Insects and ecosystem function. Springer, Berlin

    Google Scholar 

  • Keller S, Häni F (2000) Ansprüche von Nützlingen und Schädlingen an den Lebensraum. In: Nentwig W (ed) Streifenförmige ökologische Ausgleichsflächen in der Kulturlandschaft: Ackerkrautstreifen, Buntbrache, Feldränder. Verlag Agrarökologie, Bern, pp 199–217

    Google Scholar 

  • Kendall DA, Chinn NE, Smith BD, Tidboald C, Winstone L, Western NM (1991) Effects of straw disposal and tillage on spread of barley yellow dwarf virus in winter barley. Ann Appl Biol 119:359–364. doi:10.1111/j.1744-7348.1991.tb04875.x

    Google Scholar 

  • Khangura RK, Barbetti MJ (2001) Prevalence of blackleg (Leptosphaeria maculans) on canola (Brassica napus) in Western Australia. Aust J Exp Agric 41:71–80. doi:10.1071/EA00068

    Google Scholar 

  • Kharbanda PD, Tewari JP (1996) Integrated management of canola diseases using cultural methods. Can J Plant Pathol 18:168–175. doi:10.1080/07060669609500642

    Google Scholar 

  • Kiem R, Kandeler E (1997) Stabilization of aggregates by the microbial biomass as affected by soil texture and type. Appl Soil Ecol 5:221–230. doi:10.1016/S0929-1393(96)00132-1DOI:dx.doi.org

    Google Scholar 

  • Kirkegaard J, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crops Res 107:185–195. doi:10.1016/j.fcr.2008.02.010

    Google Scholar 

  • Koricheva J, Mulder CPH, Schmid B, Joshi J, Huss-Danell K (2000) Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia 125:271–282. doi:10.1007/s004420000450

    Google Scholar 

  • Lagerlöf J, Wallin H (1993) The abundance of arthropods along 2 field margins with different types of vegetation composition—an experimental study. Agric Ecosyst Environ 43:141–154. doi:10.1016/0167-8809(93)90116-7

    Google Scholar 

  • Lal R, Regnier E, Eckert DJ, Edwards WW, Hammond R (1991) Expectations of cover crops for sustainable agriculture. In: Hargrove WL (ed) Cover crops for clean water. Soil and Water Conservation Society, Ankeny, pp 1–11

    Google Scholar 

  • Landis DA, Haas MJ (1992) Influence of landscape structure on abundance and within-field distribution of European corn borer (Lepidoptera, Pyralidae) larval parasitoids in Michigan. Environ Entomol 21:409–416

    Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201. doi:10.1146/annurev.ento.45.1.175

    PubMed  CAS  Google Scholar 

  • Langmaack M, Schrader S, Rapp-Bernhardt U, Kotzke K (1999) Quantitative analysis of earthworm burrow systems with respect to biological soil-structure regeneration after soil compaction. Biol Fertil Soils 28:219–229. doi:10.1007/s003740050486

    Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Google Scholar 

  • Le Roux X, Barbault R, Baudry J, Burel F, Doussan I, Garnier E, Herzog F, Lavorel S, Lifran R, Roger-Estrade J, Sarthou J-P, Trommetter M (2008) Agriculture et biodiversité—Valoriser les synergies. Expertise scientifique collective, INRA, France

  • Lepage R, Penaud A (1995) Tout se joue avec le premier pic d’ascospores. Oléoscope 28:23–27

    Google Scholar 

  • Leroy BLM, Van den Bossche A, De Neve S, Reheul D, Moens M (2007) The quality of exogenous organic matter: short-term influence on earthworm abundance. Eur J Soil Biol 43:196–200. doi:10.1016/j.ejsobi.2007.08.015

    Google Scholar 

  • Letourneau DK (1988) Soil management for pest control: a critical appraisal of the concepts, global perspectives on agroecology and sustainable agricultural systems. Proceedings of the Sixth International Scientific Conference of IFOAM, Santa Cruz, pp 581–587

  • Losey JE, Denno RF (1998) Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79:2143–2152. doi:10.1890/0012-9658(1998)079[2143:PPPIEP]2.0.CO;2

    Google Scholar 

  • Luka H, Uehlinger G, Pfiffner L, Muhlethaler R, Blick T (2006) Extended field margins—a new element of ecological compensation in farmed landscapes—deliver positive impacts for Articulata. Agrarforschung 13:386–391

    Google Scholar 

  • Lys JA, Zimmermann M, Nentwig W (1994) Increase in activity density and species number of carabid beetles in cereals as a result of strip-management. Entomol Exp Appl 73:1–9. doi:10.1007/BF02382508

    Google Scholar 

  • Mabbett T (1991) Straw incorporation trials reveal arable slug damage will increase. Agric Int 43:304–306

    Google Scholar 

  • MacGee DC, Emmett RW (1977) Black leg (Lepstophaeria maculans (Desm.) Ces. and de Not.) of rapeseed in Victoria: crop losses and factors which affect disease severity. Aust J Agric Res 25:47–51. doi:10.1071/AR9770047

    Google Scholar 

  • Madari B, Machado PLOA, Torres E, Andrade AGd, Valencia LIO (2005) No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil Tillage Res 80:185–200. doi:10.1016/j.still.2004.03.006

    Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62. doi:10.1007/978-90-481-2666-8_22

    Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    CAS  Google Scholar 

  • Marino PC, Landis DA, Hawkins BA (2006) Conserving parasitoid assemblages of North American pest Lepidoptera: does biological control by native parasitoids depend on landscape complexity. Biol Control 37:173–185. doi:10.1016/j.biocontrol.2005.12.017

    Google Scholar 

  • Markus J, Podlaska J, Dmoch J, Pietkiewicz S, Loboda T, Lewandowski M (1996) Compensation of the damage caused by pollen beetle (Meligethes aeneus) on winter oilseed rape under different plant density and fertilisation. III—Chemical composition of winter oilseed rape cv. Leo. RosÂl Oleiste 17(2):325–330

    Google Scholar 

  • Mathews CR, Bottrell DG, Brown MW (2004) Habitat manipulation of the apple orchard floor to increase ground-dwelling predators and predation of Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biol Control 30:265–273. doi:10.1016/j.biocontrol.2003.11.006

    Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Google Scholar 

  • Mazzola M, Brown J, Izzo AD, Cohen MF (2007) Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a Brassicaceae species and time-dependent manner. Phytopathology 97:454–460. doi:10.1094/PHYTO-97-4-0454

    PubMed  Google Scholar 

  • Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Cons 106:259–271. doi:10.1016/S0006-3207(01)00252-X

    Google Scholar 

  • Mele PM, Carter MR (1999) Impact of crop management factors in conservation tillage farming on earthworm density, age structure and species abundance in south-eastern Australia. Soil Tillage Res 50:1–10. doi:10.1016/S0167-1987(98)00189-5

    Google Scholar 

  • Meyer JR, Zehr EI, Meagher RL Jr, Salvo SK (1992) Survival and growth of peach trees and pest populations in orchard plots managed with experimental ground covers. Agric Ecosyst Environ 41:353–363. doi:10.1016/0167-8809(92)90121-Q

    Google Scholar 

  • Meynard JM, Doré T, Lucas P (2003) Agronomic approach: cropping systems and plant diseases. CR Biol 326:37–46. doi:10.1016/S1631-0691(03)00006-4

    Google Scholar 

  • Milford GFJ, Evans EJ (1991) Factors causing variation in glucosinolates in oilseed rape. Outlook Agr 20:31–37

    Google Scholar 

  • Moonen AC, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 127:7–21. doi:10.1016/j.agee.2008.02.013

    Google Scholar 

  • Motisi N, Montfort F, Dore T, Romillac N, Lucas P (2009) Duration of control of two soilborne pathogens following incorporation of above- and below-ground residues of Brassica juncea into soil. Plant Pathol 58:470–478. doi:10.1111/j.1365-3059.2008.02017.x

    Google Scholar 

  • Mulder CPH, Koricheva J, Huss-Danell K, Högberg P, Joshi J (1999) Insects affect relationships between plant species richness and ecosystem processes. Ecol Lett 2:237–246. doi:10.1046/j.1461-0248.1999.00070.x

    Google Scholar 

  • Nentwig W (1988) Augmentation of beneficial arthropods by strip-management. 1. Succession of predacious arthropods and long-term change in the ratio of phytophagous and predacious arthropods in a meadow. Oecologia 76:597–606. doi:10.1007/BF00397876

    Google Scholar 

  • Nentwig W (1992) The promotive effect of weeds in sown strips on beneficial arthropods. Z Pflanzenkr Pflanzensch 13:33–40

    Google Scholar 

  • Nentwig W (1998) Weedy plant species and their beneficial arthropods: potential for manipulation in field crops. In: Barbosa P (ed) Conservation biological control. Academic, San Diego, pp 49–71

    Google Scholar 

  • Nentwig W, Frank T, Lethmayer C (1998) Sown weed strips: artificial ecological compensation areas as an important tool in conservation biological control. In: Barbosa P (ed) Conservation biological control. Academic, San Diego, pp 133–153

    Google Scholar 

  • Nilsson C (1994) Pollen beetles (Meligethes spp.) in oil seed rape crops (Brassica napus L.): biological interactions and crop losses, Swedish University of Agricultural Science

  • Norris RF, Kogan M (2005) Ecology of interactions between weeds and arthropods. Annu Rev Entomol 50:479–503. doi:10.1146/annurev.ento.49.061802.123218

    PubMed  CAS  Google Scholar 

  • Nuutinen V (1992) Earthworm community response to tillage and residue management on different soil types in southern Finland. Soil Tillage Res 23:221–239. doi:10.1016/0167-1987(92)90102-H

    Google Scholar 

  • Nuutinen V, Nieminen M, Butt KR (2006) Introducing deep burrowing earthworms (Lumbricus terrestris L.) into arable heavy clay under boreal conditions. Eur J Soil Biol 42:269–274. doi:10.1016/j.ejsobi.2006.07.022

    Google Scholar 

  • Olson DM, Wäckers FL (2007) Management of field margins to maximize multiple ecological services. J Appl Ecol 44:13–21. doi:10.1111/j.1365-2664.2006.01241.x

    Google Scholar 

  • Pagliai M, Vignozzi N, Pellegrini S (2004) Soil structure and the effect of management practices. Soil Tillage Res 79:131–143. doi:10.1016/j.still.2004.07.002

    Google Scholar 

  • Pan JJ, Baumgarten AM, May G (2008) Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays). New Phytol 178:147–156. doi:10.1111/j.1469-8137.2007.02350.x

    PubMed  Google Scholar 

  • Park AW, Gubbins S, Gilligan CA (2001) Invasion and persistence of plant parasites in spatially structured host population. Oikos 94:162–174

    Google Scholar 

  • Pelosi C, Bertrand M, Makowski D, Roger-Estrade J (2008) WORMDYN: a model of Lumbricus terrestris population dynamics in agricultural fields. Ecol Model 218:219–234. doi:10.1016/j.ecolmodel.2008.07.002

    Google Scholar 

  • Pelosi C, Bertrand M, Roger-Estrade J (2009) Earthworm community in conventional, organic and direct seeding with living mulch cropping systems. Agron Sustain Dev 29:287–295. doi:10.1051/agro/2008069

    CAS  Google Scholar 

  • Petanidou T (2003) Introducing plants for bee-keeping at any cost?—Assessment of Phacelia tanacetifolia as nectar source plant under xeric Mediterranean conditions. Plant Syst Evol 238:155–168. doi:10.1007/s00606-002-0278-x

    Google Scholar 

  • Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric Ecosyst Environ 78:215–222. doi:10.1016/S0167-8809(99)00130-9

    Google Scholar 

  • Pfiffner L, Wyss E (2004) Use of sown wildflower strips to enhance natural enemies of agricultural pest. In: Gurr GM et al (eds) Ecological engineering for pest management—advances in habitat manipulation for arthropods. CSIRO/CABI, Collingwood, pp 165–186

    Google Scholar 

  • Pfisterer AB, Diemer M, Schmid B (2003) Dietary shift and lowered biomass gain of a generalist herbivore in species poor experimental plant communities. Oecologia 135:234–241. doi:10.1007/s00442-002-1169-0

    PubMed  Google Scholar 

  • Phatak SC (1992) An integrated sustainable vegetable production system. Hortscience 27:738–741

    Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM (1997) Developing sustainable pest control from chemical ecology. Agric Ecosyst Environ 64:149–156. doi:10.1016/S0167-8809(97)00033-9

    CAS  Google Scholar 

  • Piesik D, Weaver DK, Runyon JB, Buteler M, Peck GE, Morrill WL (2008) Behavioural responses of wheat stem sawflies to wheat volatiles. Agric For Entomol 10:245–253. doi:10.1111/j.1461-9563.2008.00380.x

    Google Scholar 

  • Plantegenest M, Le May C, Fabre F (2007) Landscape epidemiology of plant diseases. J R Soc Interface 4:963–972. doi:10.1098/rsif.2007.1114

    PubMed  Google Scholar 

  • Pontin DR, Wade MR, Kehrli P, Wratten SD (2006) Attractiveness of single and multiple species flower patches to beneficial insects in agroecosystems. Ann Appl Biol 148:39–47. doi:10.1111/j.1744-7348.2005.00037.x

    Google Scholar 

  • Prasifka JR, Schmidt NP, Kohler KA, O’Neal ME, Hellmich RL, Singer JW (2006) Effects of living mulches on predator abundance and sentinel prey in a corn–soybean–forage rotation. Environ Entomol 35:1423–1431. doi:10.1603/0046-225X(2006)35[1423:EOLMOP]2.0.CO;2

    Google Scholar 

  • Pullaro TC, Marino PC, Jackson DM, Harrison HF, Keinath AP (2006) Effects of killed cover crop mulch on weeds, weed seeds, and herbivores. Agric Ecosyst Environ 115:97–104. doi:10.1016/j.agee.2005.12.021

    Google Scholar 

  • Rahim A, Hashmi A, Khan NA (1991) Effects of temperature and relative humidity on longevity and development of Ooencyrtus papilionis Ashmead (Hymenoptera: Eulophidae), a parasite of the sugarcane pest, Pyrilla perpusilla Walker (Homoptera: Cicadellidae). Environ Entomol 20:774–775

    Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614. doi:10.1111/j.1461-0248.2006.00911.x

    PubMed  Google Scholar 

  • Rebek EJ, Sadof CS, Hanks LM (2005) Manipulating the abundance of natural enemies in ornamental landscapes with floral resource plants. Biol Control 33:203–216. doi:10.1016/j.biocontrol.2005.02.011

    Google Scholar 

  • Rebek EJ, Sadof CS, Hanks LM (2006) Influence of floral resource plants on control of an armored scale pest by the parasitoid Encarsia citrina (Craw.) (Hymenoptera: Aphelinidae). Biol Control 37:320–328. doi:10.1016/j.biocontrol.2005.10.009

    Google Scholar 

  • Renwick JAA, Haribal M, Gouinguene S, Stadler E (2006) Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J Chem Ecol 32:755–766. doi:10.1007/s10886-006-9036-9

    PubMed  CAS  Google Scholar 

  • Rhainds M, English-Loeb G (2003) Testing the resource concentration hypothesis with tarnished plant bug on strawberry: density of hosts and patch size influence the interaction between abundance of nymphs and incidence of damage. Ecol Entomol 28:348–358. doi:10.1046/j.1365-2311.2003.00508.x

    Google Scholar 

  • Rice EL (1984) Allelopathy. Academic, New York

    Google Scholar 

  • Risch SJ, Andow DA, Altieri MA (1983) Agroecosystem diversity and pest control: data, tentative conclusion and new research directions. Environ Entomol 12:625–629

    Google Scholar 

  • Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:159–176

    Google Scholar 

  • Roininen H, Price PW, Tahvanainen J (1996) Bottom-up and top-down influences in the trophic system of a willow, a galling sawfly, parasitoids and inquilines. Oikos 77:44–50

    Google Scholar 

  • Roldan A, Caravaca F, Hernandez MT, Garcia C, Sanchez-Brito C, Velasquez M, Tiscareno M (2003) No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Tillage Res 72:65–73. doi:10.1016/S0167-1987(03)00051-5

    Google Scholar 

  • Root RB (1973) Organisation of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124. doi:10.2307/1942161

    Google Scholar 

  • Rosolem CA, Foloni JSS, Tiritan CS (2002) Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Tillage Res 65:109–115. doi:10.1016/S0167-1987(01)00286-0

    Google Scholar 

  • Russell EP (1989) Enemies hypothesis: a review of the effect of vegetational diversity on predatory insects and parasitoids. Environ Entomol 18:590–599

    Google Scholar 

  • Rutledge CE, Eigenbrode SD (2003) Epicuticular wax on pea plants decreases instantaneous search rate of Hippodamia convergens larvae and reduces attachment to leaf surfaces. Can Entomol 135:93–101

    Google Scholar 

  • Sadok W, Angevin F, Bergez JE, Bockstaller C, Colomb B, Guichard L, Reau R, Messean A, Dore T (2009) MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron Sustain Dev 29:447–461. doi:10.1051/agro/2009006

    Google Scholar 

  • Salam MU, Fitt BDL, Aubertot JN, Diggle AJ, Huang YJ, Barbetti MJ, Gladders P, Jedryczka M, Khangura RK, Wratten N, Fernando WGD, Penaud A, Pinochet X, Sivasithamparam K (2007) Two weather-based models for predicting the onset of seasonal release of ascospores of Leptosphaeria maculans or L. biglobosa. Plant Pathol 56:412–423. doi:10.1111/j.1365-3059.2006.01551.x

    Google Scholar 

  • Scarratt SL, Wratten SD, Lavandero B, Irvin NA (2004) A hierarchy of research approaches to the successful use of “resource subsidies” to improve parasitoid performance. In: Hoddle MS (ed) California Conference on Biological Control IV, Berkeley, California, USA, pp 88–94

  • Scheibert-Bohm F (1979) Befall mit Phoma lingam Tode (Desm.) von verschiedenen Rapssorten auf unterschiedlichen standorten in 2 jahren. Proceedings of the 5th International Rapeseed Conference 1:168–172

  • Schellhorn NA, Sork VL (1997) The impact of weed diversity on insect population dynamics and crop yield in collards, Brassica oleraceae (Brassicaceae). Oecologia 111:233–240. doi:10.1007/s004420050230

    Google Scholar 

  • Scherber C, Mwangi PN, Temperton VM, Roscher C, Schumacher J, Schmid B, Weisser WW (2006) Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147:489–500. doi:10.1007/s00442-005-0281-3

    PubMed  Google Scholar 

  • Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiol 47:846–856. doi:10.1078/0031-4056-00270

    Google Scholar 

  • Schmaedick MA, Shelton AM (2000) Arthropod predators in cabbage (Cruciferae) and their potential as naturally occurring biological control agents for Pieris rapae (Lepidoptera: Pieridae). Can Entomol 132:655–675

    Google Scholar 

  • Schmidt MH, Thewes U, Thies C, Tscharntke T (2004) Aphid suppression by natural enemies in mulched cereals. Entomol Exp Appl 113:87–93. doi:10.1111/j.0013-8703.2004.00205.x

    Google Scholar 

  • Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42:281–287. doi:10.1111/j.1365-2664.2005.01014.x

    Google Scholar 

  • Schmidt NP, O’Neal ME, Singer JW (2007) Alfalfa living mulch advances biological control of soybean aphid. Environ Entomol 36:416–424. doi:10.1603/0046-225X(2007)36[416:ALMABC]2.0.CO;2

    PubMed  Google Scholar 

  • Scown J, Baker G (2006) The influence of livestock dung on the abundance of exotic and native earthworms in a grassland in south-eastern Australia. Eur J Soil Biol 42:310–315

    Google Scholar 

  • Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Phil Trans R Soc Lond B 363:717–739. doi:10.1098/rstb.2007.2180

    Google Scholar 

  • Shili-Touzi I, de Tourdonnet S, Launay M, Doré T (2009) Does intercropping winter wheat with red fescue as a cover crop improve agronomic and environmental performance? A modeling approach. Field Crops Res 116:218–229. doi:10.1016/j.fcr.2009.11.007

    Google Scholar 

  • Shuster WD, Shipitalo MJ, Bohlen PJ, Subler S, Edwards CA (2003) Population dynamics of ambient and altered earthworm communities in row-crop agroecosystems in the Midwestern US. Pedobiologia 47:825–829. doi:10.1078/0031-4056-00266

    Google Scholar 

  • Snyder WE, Snyder GB, Finke DL, Straub CS (2006) Predator biodiversity strengthens herbivore suppression. Ecol Lett 9:789–796. doi:10.1111/j.1461-0248.2006.00922.x

    PubMed  Google Scholar 

  • Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze E-D, Siamantziouras A-SD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr 75:37–63. doi:10.1890/03-4101

    Google Scholar 

  • Stephens MJ, France CM, Wratten SD, Frampton C (1998) Enhancing biological control of leafrollers (Lepidoptera: Tortricidae) by sowing buckwheat (Fagopyrum esculentum) in an orchard. Biocontrol Sci Technol 8:547–558. doi:10.1080/09583159830063

    Google Scholar 

  • Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manage 63:337–365. doi:10.1006/jema.2001.0473

    PubMed  CAS  Google Scholar 

  • Sutherland JP, Sullivan MS, Poppy GM (2001) Distribution and abundance of aphidophagous hoverflies (Diptera: Syrphidae) in wildflower patches and field margin habitats. Agric For Entomol 3:57–64. doi:10.1046/j.1461-9563.2001.00090.x

    Google Scholar 

  • Swift MJ, Izac AMN, van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric Ecosyst Environ 104:113–134. doi:10.1016/j.agee.2004.01.013

    Google Scholar 

  • Tahvanainen JO, Root RB (1972) The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia 10:321–346. doi:10.1007/BF00345736

    Google Scholar 

  • Teasdale JR (1998) Influence of corn (Zea mays) population and row spacing on corn and velvetleaf (Abutilon theophrasti) yield. Weed Sci 46:447–453

    CAS  Google Scholar 

  • Teasdale JR, Daughtry CST (1993) Weed suppression by live and desiccated hairy vetch (Vicia villosa). Weed Sci 41:207–212

    Google Scholar 

  • Teasdale JR, Rosecrance RC (2003) Mechanical versus herbicidal strategies for killing a hairy vetch cover crop and controlling weeds in minimum-tillage corn production. Am J Alternative Agr 18:95–102. doi:10.1079/AJAA200240

    Google Scholar 

  • Teasdale JR, Brandsater LO, Calegari A, Skora Neto F (2007) Cover crops and weed management. In: Upadhyaya MK, Blackshaw RE (eds) Non-chemical weed management: principles, concepts and technology. CABI, Wallingford, pp 49–64

    Google Scholar 

  • Theunissen J, Booij CJH, Lotz LAP (1995) Effects of intercropping white cabbage with clovers on pest infestation and yield. Entomol Exp Appl 74:7–16. doi:10.1007/BF02383162

    Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895. doi:10.1126/science.285.5429.893

    PubMed  CAS  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25. doi:10.1034/j.1600-0706.2003.12567.x

    Google Scholar 

  • Thomas SR (2002) The refuge role of beetle-banks and field margins for carabid beetles on UK arable farmland: densities, composition and relationships with vegetation. In: Szyszko J et al. (eds) How to protect or what we know about carabid beetles: from knowledge to application, from Wijster (1969) to Tuczno (2001). Warsaw, Poland, pp 185–199

  • Thomas SR, Noordhuis R, Holland JM, Goulson D (2002) Botanical diversity of beetle banks effects of age and comparison with conventional arable field margins in southern UK. Agric Ecosyst Environ 93:403–412. doi:10.1016/S0167-8809(01)00342-5

    Google Scholar 

  • Tompkins JML, Wratten SD, Wäckers FL (2010) Nectar to improve parasitoid fitness in biological control: does the sucrose:hexose ratio matter? Basic Appl Ecol 11:264–271. doi:10.1016/j.baae.2009.12.010

    Google Scholar 

  • Tonhasca A, Byrne DN (1994) The effects of crop diversification on herbivorous insects: a meta-analysis approach. Ecol Entomol 19:239–244. doi:10.1111/j.1365-2311.1994.tb00415.x

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309. doi:10.1016/j.biocontrol.2007.08.006

    Google Scholar 

  • Ulmer BJ, Dosdall LM (2006a) Glucosinolate profile and oviposition behavior in relation to the susceptibilities of Brassicaceae to the cabbage seedpod weevil. Entomol Exp Appl 121:203–213. doi:10.1111/j.1570-7458.2006.00480.x

    CAS  Google Scholar 

  • Ulmer BJ, Dosdall LM (2006b) Spring emergence biology of the cabbage seedpod weevil (Coleoptera: Curculionidae). Ann Entomol Soc Am 99:64–69. doi:10.1603/0013-8746(2006)099[0064:SEBOTC]2.0.CO;2

    Google Scholar 

  • Unsicker SB, Baer N, Kahmen A, Wagner M, Buchmann N, Weisser WW (2006) Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands. Oecologia 150:233–246. doi:10.1007/s00442-006-0511-3

    PubMed  Google Scholar 

  • Valantin-Morison M, Quere L (2006) Effects of turnip rape trap crops on oilseed rape pests in a network of organic farmers’ fields. Master Congress, Göttingen, Germany

  • Valantin-Morison M, Meynard JM, Dore T (2007) Effects of crop management and surrounding field environment on insect incidence in organic winter oilseed rape (Brassica napus L.). Crop Prot 26:1108–1120. doi:10.1016/j.cropro.2006.10.005

    Google Scholar 

  • Vialatte A, Simon JC, Dedryver CA, Fabre F, Plantegenest M (2006) Tracing individual movements of aphids reveals preferential routes of population transfers in agroecosystems. Ecol Appl 16:839–844. doi:10.1890/1051-0761(2006)016[0839:TIMOAR]2.0.CO;2

    PubMed  Google Scholar 

  • Wäckers FL (2001) A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. J Insect Physiol 47:1077–1084. doi:10.1016/S0022-1910(01)00088-9

    PubMed  Google Scholar 

  • Wäckers FL (2004) Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biol Control 29:307–314. doi:10.1016/j.biocontrol.2003.08.005

    Google Scholar 

  • Wäckers FL, van Rijn PCJ, Bruin J (2005) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge. doi:10.2277/0521819415

    Google Scholar 

  • Wang GY, Ngouajio M, Warncke DD (2008) Nutrient cycling, weed suppression, and onion yield following Brassica and sorghum sudangrass cover crops. HortTechnology 18:68–74

    CAS  Google Scholar 

  • Warner KD (2007) The quality of sustainability: agroecological partnerships and the geographic branding of California winegrapes. J Rural Stud 23:142–155. doi:10.1016/j.jrurstud.2006.09.009

    Google Scholar 

  • West JS, Fitt BDL, Leech PK, Biddulph JE, Huang YJ, Balesdent MH (2002) Effects of timing of Leptosphaeria maculans ascospore release and fungicide regime on phoma leaf spot and phoma stem canker development on winter oilseed rape (Brassica napus) in southern England. Plant Pathol 51:454–463. doi:10.1046/j.1365-3059.2002.00726.x

    Google Scholar 

  • Whalen JK, Parmelee RW (1999) Growth of Aporrectodea tuberculata (Eisen) and Lumbricus terrestris L. under laboratory and field conditions. Pedobiol 43:1–10

    Google Scholar 

  • Whalley WR, Riseley B, Leeds-Harrison PB, Bird NRA, Leech PK, Adderley WP (2005) Structural differences between bulk and rhizosphere soil. Eur J Soil Sci 56:353–360. doi:10.1111/j.1365-2389.2004.00670.x

    Google Scholar 

  • White RH, Worsham AD, Blum U (1989) Allelopathic potential of legume debris and aqueous extracts. Weed Sci 37:674–679

    Google Scholar 

  • White AJ, Wratten SD, Berry NA, Weigmann U (1995) Habitat manipulation to enhance biological control of Brassica pests by hover flies (Diptera: Syrphidae). J Econ Entomol 88:1171–1176

    Google Scholar 

  • Winkler K, Wäckers FL, Bukovinszkine-Kiss G, Lenteren JV (2006) Sugar resources are vital for Diadegma semiclausum fecundity under field conditions. Basic Appl Ecol 7:133–140. doi:10.1016/j.baae.2005.06.001

    Google Scholar 

  • Winkler K, Wäckers F, Pinto DM (2009) Nectar-providing plants enhance the energetic state of herbivores as well as their parasitoids under field conditions. Ecol Entomol 34:221–227. doi:10.1111/j.1365-2311.2008.01059.x

    Google Scholar 

  • Wyss E (1995) The effects of weed strips on aphids and aphidophagous predators in an apple orchard. Entomol Exp Appl 75:43–49. doi:10.1007/BF02382778

    Google Scholar 

  • Yulianti T, Sivasithamparam K, Turner DW (2007) Saprophytic and pathogenic behaviour of R-solani AG2-1 (ZG-5) in a soil amended with Diplotaxis tenuifolia or Brassica nigra manures and incubated at different temperatures and soil water content. Plant Soil 294:277–289. doi:10.1007/s11104-007-9254-0

    CAS  Google Scholar 

  • Zehnder GW, Hough-Goldstein J (1990) Colorado potato beetle (Coleoptera: Chrysomelidae) population development and effects on yield of potatoes with and without straw mulch. J Econ Entomol 83:1982–1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Médiène.

About this article

Cite this article

Médiène, S., Valantin-Morison, M., Sarthou, JP. et al. Agroecosystem management and biotic interactions: a review. Agronomy Sust. Developm. 31, 491–514 (2011). https://doi.org/10.1007/s13593-011-0009-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0009-1

Keywords

Navigation