Skip to main content

Advertisement

Log in

Suitability of three common reference genes for quantitative real-time PCR in honey bees

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Honey bees are important model organisms for neurobiology, because they display a large array of behaviors. To link behavior with individual gene function, quantitative polymerase chain reaction is frequently used. Comparing gene expression of different individuals requires data normalization using adequate reference genes. These should ideally be expressed stably throughout lifetime. Unfortunately, this is frequently not the case. We studied how well three commonly used reference genes are suited for this purpose and measured gene expression in the brains of honey bees differing in age and social role. Although rpl32 is used most frequently, it only remains stable in expression between newly emerged bees, nurse-aged bees, and pollen foragers but shows a peak at the age of 12 days. The genes gapdh and ef1α-f1, in contrast, are expressed stably in the brain throughout all age groups except newly emerged bees. According to stability software, gapdh was expressed most stably, followed by rpl32 and ef1α-f1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Ament, S.A., Corona, M., Pollock, H.S., Robinson, G.E. (2008) Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. U. S. A. 105, 4226–4231

    Article  PubMed  CAS  Google Scholar 

  • Andersen, C.L., Jensen, J.L., Ørntoft, T.F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Bagnall, N.H., Kotze, A.C. (2010) Evaluation of reference genes for real-time PCR quantification of gene expression in the Australian sheep blowfly, Lucilia cuprina. Med. Vet. Entomol. 24, 176–181

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar, Y., Leung, H.T., Pak, W.L., Sokolowski, M.B., Robinson, G.E. (2003) cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. J. Exp. Biol. 206, 2507–2515

    Article  PubMed  CAS  Google Scholar 

  • Bloch, G., Toma, D.P., Robinson, G.E. (2001) Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J. Biol. Rhythms. 16, 444–456

    Article  PubMed  CAS  Google Scholar 

  • Bustin, S.A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193

    Article  PubMed  CAS  Google Scholar 

  • Bustin, S.A., Nolan, T. (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 15, 155–166

    PubMed  Google Scholar 

  • Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622

    Article  PubMed  CAS  Google Scholar 

  • Chapuis, M.P., Tohidi-Esfahani, D., Dodgson, T., Blondin, L., Ponton, F., Cullen, D., Simpson, S.J., Sword, G.A. (2011) Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust. BMC Mol. Biol. 12, 7

    Article  PubMed  CAS  Google Scholar 

  • Corona, M., Velarde, R.A., Remolina, S., Moran-Lauter, A., Wang, Y., Hughes, K.A., Robinson, G.E. (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. U. S. A. 104, 7128–7133

    Article  PubMed  CAS  Google Scholar 

  • Danforth, B.N., Shuqing, J. (1998) Elongation Factor-1α occurs as two copies in bees: implications for phylogenetic analysis of EF-1α sequences in insects. Mol. Biol. Evol. 15(3), 225–235

    Article  PubMed  CAS  Google Scholar 

  • Grozinger, C.M., Sharabash, N.M., Whitfield, C.W., Robinson, G.E. (2003) Pheromone-mediated gene expression in the honey bee brain. Proc. Natl. Acad. Sci. U. S. A. 100(Suppl 2), 14519–14525

    Article  PubMed  CAS  Google Scholar 

  • Grubbs, F.E. (1969) Procedures for detecting outlying observations in samples. Technometrics 11, 1–21

    Article  Google Scholar 

  • Hornáková, D., Matousková, P., Kindl, J., Valterová, I., Pichová, I. (2010) Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Anal. Biochem. 397, 118–120

    Article  PubMed  Google Scholar 

  • Huggett, J., Dheda, K., Bustin, S., Zumla, A. (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes. Immun. 6, 279–284

    Article  PubMed  CAS  Google Scholar 

  • Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., Sindelka, R., Sjöback, R., Sjögreen, B., Strömbom, L., Ståhlberg, A., Zoric, N. (2006) The real-time polymerase chain reaction. Mol. Aspects Med. 27, 95–125

    Article  PubMed  CAS  Google Scholar 

  • Ling, D., Salvaterra, P.M. (2011) Robust RT-qPCR data normalization: validation and selection of internal reference genes during post-experimental data analysis. PLoS One 6(3), e17762

    Article  PubMed  CAS  Google Scholar 

  • Lord, J.C., Hartzer, K., Toutges, M., Oppert, B. (2010) Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J. Microbiol. Methods 80, 219–221

    Article  PubMed  CAS  Google Scholar 

  • Lourenco, A.P., Mackert, A., Cristino, A.S., Simoes, Z.L.P. (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39, 372–385

    Article  CAS  Google Scholar 

  • Majerowicz, D., Alves-Bezerra, M., Logullo, R., Fonseca-de-Souza, A.L., Meyer-Fernandes, J.R., Braz, G.R., Gondim, K.C. (2011) Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae). Insect Mol. Biol. 20, 713–722

    Article  PubMed  CAS  Google Scholar 

  • Mamidala, P., Rajarapu, S.P., Jones, S.C., Mittapalli, O. (2011) Identification and validation of reference genes for quantitative real-time polymerase chain reaction in Cimex lectularius. J. Med. Entomol. 48, 947–951

    Article  PubMed  CAS  Google Scholar 

  • McQuillan, H.J., Nakagawa, S., Mercer, A.R. (2012) Mushroom bodies of the honeybee brain show cell population-specific plasticity in expression of amine-receptor genes. Learn. Mem. 19, 151–158

    Article  PubMed  CAS  Google Scholar 

  • Mustard, J.A., Blenau, W., Hamilton, I.S., Ward, V.K., Ebert, P.R., Mercer, A.R. (2003) Analysis of two D1-like dopamine receptors from the honey bee Apis mellifera reveals agonist-independent activity. Brain Res. Mol. Brain. Res. 113, 67–77

    Article  PubMed  CAS  Google Scholar 

  • Navajas, M., Migeon, A., Alaux, C., Martin-Magniette, M., Robinson, G.E., Evans, J., Cros-Arteil, S., Crauser, D., Le Conte, Y. (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 9, 301–301

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9), e45

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P. (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515

    Article  PubMed  CAS  Google Scholar 

  • Ponton, F., Chapuis, M.P., Pernice, M., Sword, G.A., Simpson, S.J. (2011) Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J. Insect. Physiol. 57, 840–850

    Article  PubMed  CAS  Google Scholar 

  • Scharlaken, B., de Graaf, D.C., Goossens, K., Brunain, M., Peelman, L.J., Jacobs, F. (2008) Reference gene selection for insect expression studies using quantitative real-time PCR: the head of the honeybee, Apis mellifera, after a bacterial challenge. J. Insect. Sci. 8, 1–10

    Article  Google Scholar 

  • Sirover, M.A. (1997) Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J. Cell. Biochem. 66, 133–140

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Higgins, P.J., Crawford, D.R. (2000) Control selection for RNA quantitation. Biotechniques 29, 332–337

    PubMed  CAS  Google Scholar 

  • Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A., Heinen, E. (1999) Housekeeping genes as internal standards: use and limits. J. Biotechnol. 75, 291–295

    Article  PubMed  CAS  Google Scholar 

  • Toma, D.P., Bloch, G., Moore, D., Robinson, G.E. (2000) Changes in period mRNA levels in the brain and division of labor in honey bee colonies. Proc. Natl. Acad. Sci. U. S. A. 97, 6914–6919

    Article  PubMed  CAS  Google Scholar 

  • Van Hiel, M.B., Van Wielendaele, P., Temmerman, L., Van Soest, S., Vuerinckx, K., Huybrechts, R., Broeck, J.V., Simonet, G. (2009) Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol. Biol. 10, 56–56

    Article  PubMed  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), RESEARCH0034

    Article  PubMed  Google Scholar 

  • Walldorf, U., Hovemann, B.T. (1990) Apis mellifera cytoplasmic elongation factor 1 alpha (EF-1α) is closely related to Drosophila melanogaster EF-1α. FEBS Lett. 267(2), 245–249

    Article  PubMed  CAS  Google Scholar 

  • Winnebeck, E.C., Millar, C.D., Warman, G.R. (2010) Why does insect RNA look degraded? J. Insect. Sci. 10, 159–159

    Article  PubMed  Google Scholar 

  • Yamazaki, Y., Shirai, K., Paul, R.K., Fujiyuki, T., Wakamoto, A., Takeuchi, H., Kubo, T. (2006) Differential expression of HR38 in the mushroom bodies of the honeybee brain depends on the caste and division of labor. FEBS Lett. 580, 2667–2670

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Benedikt Polaczek for assistance in beekeeping. This work was supported by grants from the German Research Foundation (DFG) to RS (SCH1573/2-1, SCH1573/4-1) and WB (BL469/7-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricarda Scheiner.

Additional information

Manuscript editor: Stan Schneider

Possibilité dutiliser trois gènes de référence communs pour une PCR quantitative en temps réel chez les abeilles

Expression génique / PCR quantitative / gène de référence / programme de stabilité / Apis mellifera

Untersuchung von drei häufig verwendeten Referenzgenen für quantitative Echtzeit-PCR in Honigbienen

Genexpression / quantitative PCR / Referenzgene / Stabilitätsprogramme / Apis mellifera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reim, T., Thamm, M., Rolke, D. et al. Suitability of three common reference genes for quantitative real-time PCR in honey bees. Apidologie 44, 342–350 (2013). https://doi.org/10.1007/s13592-012-0184-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0184-3

Keywords

Navigation