Skip to main content

Advertisement

Log in

Agroinfiltration of leaves for deconstructed viral vector-based transient gene expression: infiltrated leaf area affects recombinant hemagglutinin yield

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Deconstructed viral vector systems for large-scale production of recombinant proteins in Nicotiana benthamiana plants require Agrobacterium tumefaciens-assisted delivery into mesophyll cells by vacuum infiltration of leaves. To clarify the importance of uniform infiltration over the leaf surface and to propose a possible method for uniform infiltration, we quantified the extent of leaf infiltration and evaluated the potential effect of uniform infiltration on recombinant protein yield. We also investigated the effects of plant characteristics (e.g., plant age, leaf dry mass per area) and leaf detachment treatment on the extent of infiltration. First, a simple method was developed to measure the extent of leaf infiltration using a red dye solution. The quantitative results showed that the extent of infiltration in young and old leaves was substantially lower than in mature leaves. However, recombinant hemagglutinin (HA), an influenza vaccine antigen, accumulated in the infiltrated area of young and old leaves, indicating that they can synthesize and accumulate HA at detectable levels. The extent of infiltration was affected by the plant age but not by leaf dry mass per area. Improving the extent of infiltration by supplemental syringe infiltration significantly increased total HA content in leaves. Thus, increasing the infiltrated leaf area represents a potential strategy for increasing the recombinant protein yield in deconstructed viral vector-based transient gene expression systems with A. tumefaciens. The extent of infiltration was also improved without the need for time-consuming syringe infiltration when detached leaves were subjected to vacuum infiltration, suggesting that this may be a potential method to increase the extent of infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bendandi M, Marillonnet S, Kandzia R, Thieme F, Nickstadt A, Herz S, Fröde R, Inogés S, Lòpez-Dìaz de Cerio A et al (2010) Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Ann Oncol 21:2420–2427

    Article  PubMed  CAS  Google Scholar 

  • Buyel JF, Fischer R (2012) Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream costs. Biotechnol Bioeng 109:2575–2588

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Fujiuchi N, Matsuda R, Matoba N, Fujiwara K (2016) Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system. Biotechnol Bioeng 113:901–906

    Article  PubMed  CAS  Google Scholar 

  • Fujiuchi N, Matsuda R, Matoba N, Fujiwara K (2017) Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants. Biotechnol Bioeng 114:1762–1770

    Article  PubMed  CAS  Google Scholar 

  • Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, Gleba Y et al (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci USA 103:14701–14706

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7:182–188

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    Article  PubMed  CAS  Google Scholar 

  • Gleba YY, Tusé D, Giritch A (2013) Plant viral vectors for delivery by Agrobacterium. In: Palmer K, Gleba Y (eds) Plant viral vectors. Current topics in microbiology and immunology, vol 375. Springer, Berlin, pp 155–192

  • Hamorsky KT, Grooms-Williams TW, Husk AS, Bennett LJ, Palmer KE, Matoba N (2013a) Efficient single tobamoviral vector-based bioproduction of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 in Nicotiana benthamiana plants and utility of VRC01 in combination microbicides. Antimicrob Agents Chemother 57:2076–2086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamorsky KT, Kouokam JC, Bennett LJ, Baldauf KJ, Kajiura H, Fujiyama K, Matoba N (2013b) Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks. PLoS Negl Trop Dis 7:e2046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamorsky KT, Kouokam JC, Jurkiewicz JM, Nelson B, Moore LJ, Husk AS, Kajiura H, Fujiyama K, Matoba N (2015) N-glycosylation of cholera toxin B subunit in Nicotiana benthamiana: impacts on host stress response, production yield and vaccine potential. Sci Rep 5:8003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, LePore K, Elkin G, Thanavala Y, Mason HS (2008) High-yield rapid production of hepatitis B surface antigen in plant leaf by a viral expression system. Plant Biotechnol J 6:202–209

    Article  CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Komarova TV, Kosorukov VS, Frolova OY, Petrunia IV, Skrypnik KA, Gleba YY, Dorokhov YL (2011) Plant-made trastuzumab (Herceptin) inhibits HER2/Neu + cell proliferation and retards tumor growth. PLoS ONE 6:e17541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai H, Chen Q (2012) Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. Plant Cell Rep 31:573–584

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Ko K (2017) Production of recombinant anti-cancer vaccines in plants. Biomol Ther 25:345–353

    Article  Google Scholar 

  • Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp 77:e50521

    Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  PubMed  CAS  Google Scholar 

  • Liénard D, Sourrouille C, Gomord V, Faye L (2007) Pharming and transgenic plants. Biotechnol Annu Rev 13:115–147

    Article  PubMed  CAS  Google Scholar 

  • Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  PubMed  CAS  Google Scholar 

  • Ma JKC, Christou P, Chikwamba R, Haydon H, Paul M, Ferrer MP, Ramalingam S, Rech E, Rybicki E et al (2013) Realising the value of plant molecular pharming to benefit the poor in developing countries and emerging economies. Plant Biotechnol J 11:1029–1033

    Article  PubMed  Google Scholar 

  • Makino A, Mae T, Ohira K (1984) Changes in photosynthetic capacity in rice leaves from emergence through senescence. Analysis from ribulose-1,5-bisphosphate carboxylase and leaf conductance. Plant Cell Physiol 25:511–521

    CAS  Google Scholar 

  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    Article  PubMed  CAS  Google Scholar 

  • Matoba N, Husk AS, Barnett BW, Pickel MM, Arntzen CJ, Montefiori DC, Takahashi A, Tanno K, Omura S et al (2010) HIV-1 neutralization profile and plant-based recombinant expression of actinohivin, an Env glycan-specific lectin devoid of T-cell mitogenic activity. PLoS ONE 5:e11143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matoba N, Davis KR, Palmer KE (2011) Recombinant protein expression in Nicotiana. Methods Mol Biol 701:199–219

    Article  PubMed  CAS  Google Scholar 

  • Matsuda R, Tahara A, Matoba N, Fujiwara K (2012) Virus vector-mediated rapid protein production in Nicotiana benthamiana: effects of temperature and photosynthetic photon flux density on hemagglutinin accumulation. Environ Control Biol 50:375–381

    Article  CAS  Google Scholar 

  • Matsuda R, Abe T, Fujiuchi N, Matoba N, Fujiwara K (2017) Effect of temperature post viral vector inoculation on the amount of hemagglutinin transiently expressed in Nicotiana benthamiana leaves. J Biosci Bioeng 124:346–350

    Article  PubMed  CAS  Google Scholar 

  • Nausch H, Mikschofsky H, Koslowski R, Meyer U, Broer I, Huckauf J (2012a) Expression and subcellular targeting of human complement factor C5a in Nicotiana species. PLoS ONE 7:e53023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nausch H, Mikschofsky H, Koslowski R, Meyer U, Broer I, Huckauf J (2012b) High-level transient expression of ER-targeted human interleukin 6 in Nicotiana benthamiana. PLoS ONE 7:e48938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plesha MA, Huang TK, Dandekar AM, Falk BW, McDonald KA (2007) High-level transient production of a heterologous protein in plants by optimizing induction of a chemically inducible viral amplicon expression system. Biotechnol Prog 23:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Plesha MA, Huang TK, Dandekar AM, Falk BW, McDonald KA (2009) Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system. Biotechnol Prog 25:722–734

    Article  PubMed  CAS  Google Scholar 

  • Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP (2002) Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol 40:45–74

    Article  PubMed  CAS  Google Scholar 

  • Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D et al (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654

    Article  PubMed  CAS  Google Scholar 

  • The GIMP Team (2017) GIMP: GNU Image Manipulation Program. Available via https://www.gimp.org. Accessed 4 Dec 2017

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  PubMed  CAS  Google Scholar 

  • Webster DE, Wang L, Mulcair M, Ma C, Santi L, Mason HS, Wesselingh SL, Coppel RL (2009) Production and characterization of an orally immunogenic Plasmodium antigen in plants using a virus-based expression system. Plant Biotechnol J 7:846–855

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  PubMed  CAS  Google Scholar 

  • Yano S, Terashima I (2004) Developmental process of sun and shade leaves in Chenopodium album L. Plant, Cell Environ 27:781–793

    Article  Google Scholar 

  • Zeitlin L, Pettitt J, Scully C, Bohorova N, Kim D, Pauly M, Hiatt A, Ngo L, Steinkellner H et al (2011) Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc Natl Acad Sci USA 108:20690–20694

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shoko Miyagi and Akiko Ikeno for their technical assistance in experiments and Dr. Nobuyuki Matoba for providing invaluable suggestions. The magnICON vector was provided by Icon Genetics GmbH, Halle (Saale), Germany. The pNM216 and N. benthamiana seeds were provided by Kentucky BioProcessing, Inc., Owensboro, KY, USA. This work was financially supported in part by JSPS KAKENHI (Grant Numbers JP23780255 and JP17H03893 to RM) and by Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry (Grant Number 25025A) from the Ministry of Agriculture, Forestry, and Fisheries, Japan, to RM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Matsuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, R., Kushibiki, T., Fujiuchi, N. et al. Agroinfiltration of leaves for deconstructed viral vector-based transient gene expression: infiltrated leaf area affects recombinant hemagglutinin yield. Hortic. Environ. Biotechnol. 59, 547–555 (2018). https://doi.org/10.1007/s13580-018-0047-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-018-0047-6

Keywords

Navigation