Skip to main content

Advertisement

Log in

The phytotoxic effects of selenium–mercury interactions on root growth in Brassica rapa (LvLing)

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Rapid industrial and agricultural development has dramatically increased the emission of selenium (Se) and mercury (Hg) into the environment. Combined soil pollution by Se and Hg poses a potential threat to crop production. However, no toxic effects of Hg–Se interactions on plants have been reported previously. In this study, we investigated the effects of Hg–Se interactions on biochemical and physiological indices in the roots of Brassica rapa (LvLing). Seedlings were treated hydroponically with solutions of mercury chloride (1 μM), sodium selenite (4 μM), or a combination of the two. Combined Hg+Se treatment significantly inhibited root growth, reduced root biomass, and enhanced reactive oxygen species (ROS) and malondialdehyde accumulation and led to a loss of plasma membrane integrity. The combined treatment increased glutathione peroxidase, glutathione S-transferase, and peroxidase activity, reduced superoxide dismutase activity, and had no effect on catalase activity. In addition, we detected increased glutathione concentrations in root tips and reduced ascorbic acid concentrations in the presence of Hg+Se relative to individual treatments with these elements. Thus, Hg–Se interactions enhanced oxidative injury, cell death, and phytotoxicity in B. rapa roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abdelrahman E, Wei YY, Meng Q, Zheng Q, Yang ZM (2010) Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicol 19:1285–1293

    Article  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2006) Copper-induced changes in the growth, oxidative metabolism and saponin production in suspension culture roots of Panax ginseng in bioreactors. Plant Cell Rep 25:1122–1132

    Article  CAS  PubMed  Google Scholar 

  • Arscott S, Goldman I (2012) Biomass effects and selenium accumulation in sprouts of three vegetable species grown in selenium-enriched conditions. J Am Soc Hortic Sci 47:497–502

    CAS  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in condition. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Calgaroto NS, Cargnelutti D, Rossato LV, Farias JG, Nunes ST, Tabaldi LA, Antes FG, Flores EMM, Schetinger MRC, et al (2011) Zinc alleviates mercury-induced oxidative stress in Pfaffia glomerata (Spreng.) Pedersen Biometals 24:959–971

  • Cho UH, Park JQ (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Devi DD, Shanker AK, Sheeba A, Bangarusamy U (2005) Selenium-an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jackoby WB (1974) The glutathione-S-transferase, the first enzymatic step in mercapturic acid formation. Environ Qual 2:93–96

    Google Scholar 

  • Hasanuzzaman M, Md KN, Alam M, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Sunc K, Suc X, Pana Y, Zhang Y (2012) Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerine bunge and Chenopodium album L. J Hazard Mater 205-206:131–138

    Article  CAS  PubMed  Google Scholar 

  • Huckabee JW, Griffith NA (1974) Toxicity of mercury and selenium to the eggs of carp (Cyprinus carpio). Trans Am Fish Soc 103:822–828

    Article  CAS  Google Scholar 

  • Kellermeier F, Chardon F, Amtmann A (2013) Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161:1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liso R, De Tullio MC, Ciraci S, Balestrini R, Rocca NL, Bruno L, Chiappetta A, Bitonti MB, Bonfante P (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. J Exp Bot 55:2589–2597

    Article  CAS  PubMed  Google Scholar 

  • Magdalena MZ, Malgorzata W (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor Plants. Biol Trace Elem Res 147:320–328

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 9:405–410

    Article  Google Scholar 

  • Natalia G, Antonio F, Luis DB, Manuel Z, Annalisa Z, Manuel A, Eva S, Javier A, Octavio PL (2015) Mercury and selenium status of bottlenose dolphins (Tursiops truncatus): A study in stranded animals on the Canary Islands. Sci Total Environ 536:489–498

    Article  Google Scholar 

  • Orozco-Cárdenas ML, Ryan CA (1999) Hydrogen peroxide is generated systematically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci 96:6553–6557

    Article  PubMed  PubMed Central  Google Scholar 

  • Penglasea S, Hamrea K, Ellingsena S (2014) Selenium and mercury have a synergistic negative effect on fish reproduction. Aquat Toxicol 149:16–24

    Article  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Sarkar B, Bhattacharjee S, Daware A, Tribedi P, Krishnani KK, Minhas PS (2015) Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Res Lett 10:371

    Article  PubMed  PubMed Central  Google Scholar 

  • Shun G, Chao OY, Lin T, Zhu JQ, Xu Y, Wang SH, Chen F (2010) Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity. J Hazard Mater 182:591–597

    Article  Google Scholar 

  • Srinivasan M, Shivendra VS, Paulo JCF, Perumal V (2015) Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Pollut Res 22:4597–4608

    Article  Google Scholar 

  • Tyerman SD, Bohnert HJ, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins:their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071

    CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang YD, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. Environ Qual 33:1779–1785

    Article  CAS  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Fei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, ZW., Chen, J., Li, H. et al. The phytotoxic effects of selenium–mercury interactions on root growth in Brassica rapa (LvLing). Hortic. Environ. Biotechnol. 57, 232–240 (2016). https://doi.org/10.1007/s13580-016-0034-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-016-0034-8

Additional key words

Navigation