Skip to main content
Log in

Evaluating biochemical response of some selected perennial grasses under drought stress in Iran

  • Research Report
  • Others
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Native grasses are important for the enhancement of landscape. Agropyron cristatum, A.intermedium, Festuca ovina, Festuca arundinaceae, Cynodon dactylon, Bromus inermis and B. confinis are the potential sources of low maintenance turfgrasses for semi-arid regions. This greenhouse study examined the interaction of four different levels of soil water contents with 75, 50, and 25% field capacity (FC) and non-irrigation on physiological and biochemical responses of each accession. Total carbohydrate and sucrose contents of F. arundinaceae were increased significantly under non-irrigated treatment but decreased in the other genotypes. Proline, hydrogen peroxide, and total ascorbate increased in all the species under drought. Also, with decreased soil water content, H2O2 content increased up to 50% in F. arundinaceae. Protein content of F. arundinacea increased significantly under drought stress compared to the control; however, it decreased in other genotypes. Ascorbate peroxidase activities were increased in Festuca sp. and decreased in A. cristatum. It was found that F. arundinacea was able to maintain higher relative water content level and osmotic potential in non-irrigated drought treatment than B. inermis and A. cristatum. It may be speculated that the observed drought stress tolerance was associated with the ability of accumulating compatible solutes and H2O2 signaling cascade. Also, the high activity of ascorbate peroxidase resulted in protection against oxidative damage. It seems that this mechanism worked better in F. arundinacea to be used as low maintenance turfgrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Ahuja, I., R.C.H.D. Vos, A.M. Bones, and R.D. Hall. 2010. Plant molecular stress responses face climate change. Trends Plant Sci. 15:664–674.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, M. and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant biotic stress resistance. Environ. Exp. Bot. 59:206–216.

    Article  CAS  Google Scholar 

  • Bandurska, H. and W. Jozwiak. 2010. A comparison of the effects of drought on proline accumulation and peroxidases activity in leaves of Festuca rubra L. and Lolium perenne L. Acta Soc. Bot. Pol. 79:111–116.

    Article  CAS  Google Scholar 

  • Bartels, D. and R. Sunkar. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24:23–58.

    Article  CAS  Google Scholar 

  • Blum, A. 2005. Drought resistance, water-use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive. Austral. J. Agric. Res. 56:1159–1168.

    Article  Google Scholar 

  • Bor, N.L. 1970. Gramineae-Fetuceae. In: K.H. Rechinger (ed.). Flora Iranica. Akademische Druck-u Verlagsanstalt, Graz, 70:450–452. (In German)

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle the protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chandler, P.M. and M. Robertson. 1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Mol. Biol. 45:113–141.

    Article  CAS  Google Scholar 

  • Change, B. and A.C. Maehly. 1955. Assay of catalases and peroxidase. Methods Enzymol. 2:764–775.

    Article  Google Scholar 

  • Chen, C. and M.B. Dickman. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. U.S.A. 102:3459–3464.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhary, N.L., R.K. Sairam, and A. Tyagi. 2005. Expression of delta1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian J. Biochem. Biophys. 42:366–370.

    CAS  PubMed  Google Scholar 

  • Cizkova, H., J. Lukavska, K. Pribian, J. Kopecky, and H. Brabcova. 1996. Carbohydrate levels in rhizomes of Phragmites australis at an oligotrophic and eutrophic site: A preliminary study. Folia Geobot. Phytotax. 31:111–118.

    Article  Google Scholar 

  • DaCosta, M. and B.R. Huang. 2007. Changes in antioxidant enzyme activities and lipid peroxidation for bent grass species in response to drought stress. J. Am. Soc. Hortic. Sci. 132:319–326.

    CAS  Google Scholar 

  • Dat, J.F., H. Lopez-Delgado, C.H. Foyer, and I.M. Scott. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116:1351–1357.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dewey, D.R. and K.H. Asay. 1975. The creasted wheatgrasses of Iran. Crop Sci. 15:844–849.

    Article  Google Scholar 

  • Etemadi, N., B.E. Sayed-tabatabaei, Z. Zamani, K.H. Razmjoo, A. Khalighi, and H. Lessani. 2006. Evaluation of diversity among Cynodon dactylon (L.) Pers. Using RAPD markers. Intl. J. Agric. Biol. 8:198–202.

    CAS  Google Scholar 

  • Evers, D., I. Lefe`vre, S. Legay, D. Lamoureux, J.F. Hausman, R.O. Rosales, M. Gutierrez, L.R. Tincopa, L. Hoffmann, M. Bonierbale, and R. Schafleitner. 2010. Identiflcation of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J. Exp. Bot. 61:2327–2343.

    Article  CAS  PubMed  Google Scholar 

  • Fu, J.M and B.R. Huang. 2001. Involvment of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 45:105–114.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, O.W. 1980. Determination of glutathione disulphid using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106:207–212.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., M. Clement, and L. Long. 2000. Hydrogen peroxide in the human body. FEBS. Lett. 486:10–13.

    Article  CAS  PubMed  Google Scholar 

  • Harlan, J.R. and K.M. Rawal. 1970. Geographic distribution of the species of Cynodon L.C. Rich (Gramineae). East Afr. Agric. For. J. 36:220–226.

    Google Scholar 

  • Huang, B. and J.W. Johnson. 1955. Root respiration and carbohydrate status of two wheat genotypes response to hypoxia. Ann. Bot. 75:427–432.

    Article  Google Scholar 

  • Jagtap, V. and S. Bhargava. 1995. Variation in antioxidant metabolism of drought tolerant and drought susceptible varieties of Sorghum bicolor (L.) Moench. Exposed to high light, low water and high temperature stress. J. Plant Physiol. 145:195–197.

    CAS  Google Scholar 

  • Jiang, Y. and B. Huang. 2002. Protein alternation in tall fescue in response to drought stress and abscisic acid. Crop Sci. 42:202–207.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y. and B.R. Huang. 2001. Drought heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 41:436–442.

    Article  CAS  Google Scholar 

  • Kiyosue, T., Y. Yoshiba, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1996. A nuclear gene encoding mitochondrial proline dehydrogenase and enzyme involved in proline metabolism is up regulated by proline but down regulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar, R. 2009. Role of naturally occurring osmolytes in protein folding and stability. Arch. Biochem. Biophys. 491:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D.H. and C.B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: In gel enzyme activity assays. Plant Sci. 159:75–85.

    Article  CAS  PubMed  Google Scholar 

  • Lugan, R., M.F. Niogret, L. Leport, J.P. Gue´gan, F. Larher, A. Savoure´, J. Kopka, and A. Bouchereau. 2010. Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. The Plant J. 64:215–229.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, J.P., J.F. Ledent, M. Bajji, J.M. Kient, and S. Lutts. 2003. Effect of water stress on growth, Na+ and K+ accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L. Plant Growth Regul. 41:63–73.

    Article  CAS  Google Scholar 

  • Miller, G., K. Schlauch, R. Tam, D. Cortes, M.A. Torres, V. Shulaev, J.L. Dangl, and R. Mittler. 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2:ra45.

  • Moller, I.M., P.E. Jensen, and A. Hansson. 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58:459–481.

    Article  PubMed  Google Scholar 

  • Mozaffarian, V. 1996. A dictionary of Iranian plant names, Farhang Moaser, Tehran., p. 671.

    Google Scholar 

  • Munns, R., R.A. James, and A. Läuchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57:1025–1043.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y. and K. Asada. 1981. Hydrogen peroxidase is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.

    CAS  Google Scholar 

  • Neill, S., R. Desikanand, and J. Hancock. 2002. Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5:388–395.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G., A.M. Arisi, L. Jouanin, K.J. Kunert, H. Rennenberg, and C.H. Foyer. 1998. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 49:623–647.

    CAS  Google Scholar 

  • Pessarakli, M. 2011. Handbook of plant and crop stress. CRC Press, Tucson, AZ, USA.

    Google Scholar 

  • Potters, G., L. De Gara, H. Asard, and N. Horemans. 2002. Ascorbate and glutathione: Guardians of the cell cycle, partners in crime? Plant Physiol. Biochem. 40:537–548.

    CAS  Google Scholar 

  • Riccardi. F., P. Gazeau, D.V. Vienne, and M. Zivy. 1998. Protein changes in response to progressive water deficit in maize. Plant physiol. 117:1253–1263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roychoudhury, A., S. Basu, S.N. Sharker, and D.N. Sengupta. 2008. Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep. 27:1395–1410.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, D.H., M.R. Siahpoosh, U. Roessner, M. Udvardi, and J. Kopka. 2008. Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol. Plant. 132:209–219.

    CAS  PubMed  Google Scholar 

  • Shahba, M.A., Y.L. Qian, H.G. Hughes, A.J. Koski, and D. Christensen. 2003. Relationships of soluble carbohydrates and freeze tolerance in Saltgrass. Crop Sci. 43:2148–2153.

    Article  CAS  Google Scholar 

  • Shan, C. and Z. Liang. 2010. Jasmonic acid regulates ascorbat and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci. 178:130–139.

    Article  CAS  Google Scholar 

  • Smith, I.K., T.L. Vierheller, and C.A. Throne. 1988. Assay of glutathione reductase in crude tissue homogenates using 5, 5-dithiobis (2 nitrobenzoic acid). Annl. Biochem. 175:408–413.

    Article  CAS  Google Scholar 

  • Turner, N.C. and E. Begg. 1978. Responses of pasture plants to water deficits, p. 50–66. In: J.R. Wilson. (ed.). Plant relations in pastures. CSIRO. Melbourne.

    Google Scholar 

  • Wang, X., H. Gao, Z. Wang, and J. Li. 2011. Molecular and genetic analysis of abiotic stress resistance of forage crops. Plants Environ. p. 272.

    Google Scholar 

  • Yang, S.Q., G.X. Ren, G.H. Yang, Y.Z. Feng, and Q. Zhang. 2007. Effects of Water stress on osmoregulation substances and chlorophyll fluorescent parameter for forage grass.Acta Bot. Boreal-Occident Sin. 27:1826–1932.

    CAS  Google Scholar 

  • Yang, Y., C. Han, Q. Liu, B. Lin, and J. Wang. 2008. Effect of drought and low light on growth and enzymatic antioxidant system of Picea zerata seedlings. Acta Physiol. Plant. 30:433–440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayer Azam Khoshkholghsima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshkholghsima, N.A., Rohollahi, I. Evaluating biochemical response of some selected perennial grasses under drought stress in Iran. Hortic. Environ. Biotechnol. 56, 383–390 (2015). https://doi.org/10.1007/s13580-015-0010-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0010-8

Additional key words

Navigation