Skip to main content

Advertisement

Log in

Enlarging bulblet by magnetic and chelating structures of nano-chitosan as supplementary fertilizer in Lilium

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The nutrition is the effective component on the increasing size of the bulb in growth period. In this work, carboxymethyl chitosan and magnetic nano-chitosan in a size ≤ 20 nm were synthesized that can be taken up by plant roots. The purpose of this work was to evaluate carboxymethyl chitosan and magnetic nano-chitosan with chelating structures as supplementary fertilizers to increase yearling bulblet growth in Lilium. The application of magnetic nano-chitosan at a concentration of 15 mg·L-1 as compared to its lower concentrations, carboxymethyl chitosan and iron sulphate had better effect on the promoting the growth, development and protecting the shoot, and growth of bulblet. Higher growth and development of shoots and roots by high concentration of magnetic nano-chitosan could affect the enlarging bulblet. There was a positive magnetic effect on the enzyme structures and supplying the essential iron for plant. Furthermore, magnetic nano-chitosan can act as a chelating component to facilitate the uptake of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abadía, J., S. Vázquez, R. Rellán-Álvarez, H. El-Jenoubi, A. Abadía, A. Álvarez-Fernández, and A.F. López-Millillán. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiol. Biochem. 49:471–482.

    Article  PubMed  Google Scholar 

  • Anderson, N.O., A. Younis, and Y. Sun. 2010. Intersimple sequence repeats distinguish genetic differences in Easter lily ‘Nellie White’ clonal ramets within and among bulb growers over years. J. Amer. Soc. Hort. Sci. 135:445–455.

    Google Scholar 

  • Barka, E.A., P. Eullaffroy, C. Clément, and G. Vernet. 2004. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Rep. 22:608–614.

    Article  Google Scholar 

  • Borlotti, A., G. Vigani, and G. Zocchi. 2012. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. BMC Plant Biol. 12:189–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang, Y.C. and D.H. Chen. 2005. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J. Colloid Interface Sci. 283:446–451.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y.C., S.W. Chang, and D.H. Chen. 2006. Magnetic chitosan nanoparticles: Studies on chitosan binding and adsorption of Co (II) ions. React. Funct. Polym. 66:335–341.

    Article  CAS  Google Scholar 

  • Chen, X.G. and H.J. Park. 2003. Chemical characteristics of Ocarboxymethyl chitosans related to the preparation conditions. Carbohydr. Polym. 53:355–359.

    Article  CAS  Google Scholar 

  • Du Toit, E.S. 2001. Temperature effects on bulb growth and inflorescence development of Lachenalia cv. Ronina. PhD Diss., University of Pretoria, Pretoria, South Africa.

    Google Scholar 

  • Dzung, N.A., V.T. Phuong, and T.T. Dzung. 2011. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr. Polym. 84: 751–755.

    Article  CAS  Google Scholar 

  • El-Sherbiny, I.M. 2009. Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur. Polym. J. 45:199–210.

    Article  CAS  Google Scholar 

  • El-Tantawy, E.M. 2009. Behavior of tomato plants as affected by spaying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pak. J. Biol. Sci. 12:1164–1173.

    Article  CAS  PubMed  Google Scholar 

  • Górnik, K., M. Grzesik, and B. Romanowska-Duda. 2008. The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. J. Fruit Ornamental Plant Res. 16:333–343.

    Google Scholar 

  • Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Calif. Agr. Expt. Sta. Circ. 347:1–32.

    Google Scholar 

  • Kang, Y.S., S. Risbud, J.F. Rabolt, and P. Stroeve. 1996. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8:2209–2211.

    Article  CAS  Google Scholar 

  • Kim, S.H., Jr. C.E. Niedziela, P.V. Nelson, A.A. De Hertogh, W.H. Swallow, and N.C. Mingis. 2007a. Growth and development of Lilium longiflorum “Nellie White” during bulb production under controlled environments. I. Effects of constant, variable and greenhouse day/night temperature regims on scale and stem bulblets. Sci. Hort. 112:89–94.

    Article  Google Scholar 

  • Kim, S.H., Jr. C.E. Niedziela, P.V. Nelson, A.A. De Hertogh, W.H. Swallow, and N.C. Mingis. 2007b. Growth and development of Lilium longiflorum ‘Nellie White’ during bulb production under controlled environments. II. Effects of shifting day/night temperature regimes on scale bulblet. Sci. Hort. 112:95–98.

    Article  Google Scholar 

  • Limpanavech, P., S. Chaiyasuta, R. Vongpromek, R. Pichyangkura, C. Khunwasi, S. Chadchanwan, P. Lotrakul, R. Bunjongrat, A. Chaidee, and T. Bangyeekhun. 2008. Effect of chitosan on floral production, gene expression and anatomical changes in the Dendrobium orchid. Sci. Hort. 116:65–72.

    Article  CAS  Google Scholar 

  • Lucidos, J.G., K.B. Ryu, A. Younis, C.K. Kim, Y.J. Hwang, B.G. Son, and K.B. Lim. 2013. Different day and night temperatures responses in Lilium hansonii in relation to growth and flower development. Hort. Environ. Biotechnol. 54:405–411.

    Article  CAS  Google Scholar 

  • Marinangeli, P.A., L.F. Hernández, C.P. Pellegrini, and N.R. Curvetto. 2003. Bulblet differentiation after scale propagation of Lilium longiflorum. J. Amer. Soc. Hort. Sci. 128:324–329.

    Google Scholar 

  • Matsuo, E. 1972. Studies on the Easter lily (Lilium longiflorum Thunb.) of Senkaku Retto (Pinnacle Islands). J. Japan. Soc. Hort. Sci. 41:383–392.

    Article  Google Scholar 

  • Matsuo, E., M. Matsuzawa, Y. Sakata, and K. Arisumi. 1989. Asexual propagation of variegated Lilium longiflorum “Chotaro”. Sci. Hort. 39:349–354.

    Article  CAS  Google Scholar 

  • Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, and D. Sakthi Kumar. 2010. Nanoparticulate material delivery to plants. Plant Sci. 179:54–163

    Article  Google Scholar 

  • Netto, A.T., E. Campostrini, J.G. De Oliveira, and R.E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hort. 104:199–209.

    Article  Google Scholar 

  • Nge, K.L., N. New, S. Chandrkrachang, and W.F. Stevens. 2006. Chitosan as a growth stimulator in orchid tissue culture. Plant Sci. 170:1185–1190.

    Article  CAS  Google Scholar 

  • Niedziela, Jr. C.E., S.H., Kim, P.V. Nelson, and A.A. De Hertogh. 2008. Effects of N-P-K deficiency and temperature regime on the growth and development of Lilium longiflorum “Nellie White” during bulb production under phytotron conditions. Sci. Hort. 116:430–436.

    Article  CAS  Google Scholar 

  • Park, N.B. 1996. Effect of temperature, scale position, and growth regulators on the bulblet formation and growth during propagation of Lilium. Acta Hort. 414:252–262.

    Google Scholar 

  • Pavel, A. and D.E. Creangă. 2005. Chromosomal aberration in plants under magnetic fluid influence. J. Magn. Magn. Mater. 289: 469–472.

    Article  CAS  Google Scholar 

  • Pavel, A., M. Trifan, I.I. Bara, D.E. Creangă, and C. Cotae. 1999. Accumulation dynamics and some cytogenetical tests at Chelidonium majus and Papaver somniferum callus under the magnetic liquid effect. J. Magn. Magn. Mater. 201:443–445.

    Article  CAS  Google Scholar 

  • Pornpienpakdee, P., R. Singhasurasak, P. Chaiyasap, R. Pichyangkura, R. Bunjongrat, S. Chadchawan, and P. Limpanavech. 2010. Improving the micropropagation efficiency of hybrid Dendrobium orchids with chitosan. Sci. Hort. 124:490–499.

    Article  CAS  Google Scholar 

  • Răcuciu, M. and D.E. Creangă. 2007a. Influence of water-based ferrofluid upon chlorophylls in cereals. J. Magn. Magn. Mater. 311:291–294.

    Article  Google Scholar 

  • Răcuciu, M. and D.E. Creangă. 2007b. TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Romanian J. Phys. 52:395–402.

    Google Scholar 

  • Răcuciu, M. and D.E. Creangă. 2009. Biocompatible magnetic fluid nanoparticles internalized in vegetal tissue. Romanian J. Phys. 54:115–124.

    Google Scholar 

  • Răcuciu, M., S. Miclăuş, and D.E. Creangă. 2009. The response of plant tissues to magnetic fluid and electromagnetic exposure. Romanian J. Phys. 19:73–82.

    Google Scholar 

  • Radhakrishnan R. and B.D.R. Kumari. 2012. Pulsed magnetic field: A contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiol. Biochem. 51:139–144.

    Article  CAS  PubMed  Google Scholar 

  • Sala, F. 1999. Magnetic fluids effect upon growth processes in plants. J. Magn. Magn. Mater. 201:440–442.

    Article  CAS  Google Scholar 

  • Thoiron, S. and J.F. Briat. 1999. Differential expression of maize sugar responsive genes in response to iron deficiency. Plant Physiol. Biochem. 37:759–766.

    Article  CAS  Google Scholar 

  • Wang, Y.T. and A.N. Roberts. 1983. Influence of air and soil temperatures on the growth and development of Lilium longiflorum Thunb. during different growth phases. J. Amer. Soc. Hort. Sci. 108:810–815.

    Google Scholar 

  • Wu, L. and M. Liu. 2008. Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr. Polym. 72:240–247.

    Article  CAS  Google Scholar 

  • Younis, A., A. Riaz, M. Sajid, N. Mushtaq, M. Ahsan, M. Hameed, U. Tariq, and M. Nadeem. 2013. Foliar application of macro- and micronutrients on the yield and quality of Rosa hybrid cvs. ‘Cardinal’ and ‘Whisky Mac’. Afri. J. Biotechnol. 12:702–708.

    Google Scholar 

  • Younis, A., A. Riaz, S.S. Khosa, A. Rayit, and S. Yasmeen. 2011. Effect of foliar application of macro and micro nutrients on growth and flowering of Gerbera jamesonii L. American-Eurasian J. Agric. Environ. Sci. 11:736–757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedeh-Somaye Shafiee-Masouleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiee-Masouleh, SS., Hatamzadeh, A., Samizadeh, H. et al. Enlarging bulblet by magnetic and chelating structures of nano-chitosan as supplementary fertilizer in Lilium . Hortic. Environ. Biotechnol. 55, 437–444 (2014). https://doi.org/10.1007/s13580-014-0175-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-014-0175-6

Additional key words

Navigation