Skip to main content
Log in

Contents of phytochemical constituents and antioxidant activity of 19 garlic (Allium sativum L.) parental lines and cultivars

  • Research Report
  • Others
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Phytochemical constituents, such as alliin, vitamin C, total phenol and total flavonoid, content of free sugars, and antioxidant activity of 19 garlic lines and cultivars [six parental lines, three controlled cultivars, five cultivars for regional adaptation test (RAT cultivars), and five new cultivars, released by NIHHS for commercialization] cultivated at the experimental field in the NIHHS, RDA in Suwon were evaluated. Average contents of alliin, vitamin C, total phenol and total flavonoid per 100 g dry weight, respectively, were 1,938.4 mg, 9.3 mg, 97.0 mg gallic acid equivalent (GAE) and 16.1 mg catechin hydrate equivalent (CE), and antioxidant activity was 27.5%. Among the three free sugars analyzed, sucrose was present in the greatest quantity (3.48%), followed by fructose (1.05%) and glucose (0.54%). The RAT cultivars, R-01, R-04 and R-05, and new cultivars released for commercialization, NC-02, NC-03 and NC-04, exhibited statistically greater contents of phytochemicals, and consequently possessed higher antioxidant activities as compared to the parental lines and control cultivars. Total flavonoid content showed the highest positive correlations with antioxidant activity (r = 0.908**), followed by total phenol and vitamin C contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Agarwal, K.C. 1996. Therapeutic actions of garlic constituents. Med. Res. Rev. 16:111–124.

    Article  CAS  PubMed  Google Scholar 

  • Amagase, H. 2006. Clarifying the real bioactive constituents of garlic. J. Nutr. 136:716S–725S.

    CAS  PubMed  Google Scholar 

  • Aires, A., C. Fernandes, R. Carvalho, R.N. Bennett, M.J. Saavedra, and E.A.S. Rosa. 2011. Seasonal effects on bioactive compounds and antioxidant capacity of six economically important Brassica vegetables. Molecules 16:6816–6832.

    Article  CAS  PubMed  Google Scholar 

  • Arnault, I., J.P. Christides, N. Mandon, T. Haffner, R. Kahane, and J. Auger. 2003. High-performance ion-pair chromatography method for simultaneous analysis of alliin, deoxyalliin, allicin and dipeptide precursors in garlic products using multiple mass spectrometry and UV detection. J. Chrom. A 991:69–75.

    Article  CAS  Google Scholar 

  • Atashi, S., V. Akbarpour, K. Mashayekhi, and S.J. Mousavizadeh. 2011. Garlic physiological characteristics from harvest to sprouting in response to low temperature. J. Stored Prod. Postharvest Res. 2:285–291.

    CAS  Google Scholar 

  • Banerjee, S.K., P.K. Mukherjee, and S.K. Maulik. 2003. Garlic as an antioxidant: The good, the bad and the ugly. Phytother. Res. 17:97–106.

    Article  CAS  PubMed  Google Scholar 

  • Beato, V.M., F. Orgaz, F. Mansilla, and A. Montano. 2011. Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods Hum. Nutr. 66:218–223.

    Article  CAS  PubMed  Google Scholar 

  • Bozin, B., N. Mimica-Dukic, I. Samojlik, A. Goran, and R. Igic. 2008. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chem. 111:925–929.

    Article  CAS  Google Scholar 

  • Cai, Y., R. Wang, F. Pei, and B.B. Liang. 2007. Antibacterial activity of allicin alone and in combination with β-lactams against Staphylococcus spp. and Pseudomonas aeruginosa. J. Antibio. 60:335–338.

    Article  CAS  Google Scholar 

  • Choi, M.K., K.Y. Chae, J.Y. Lee, and K.H. Kyung. 2007. Antimicrobial activity of chemical substances derived from S-alk (en)yl-L-cysteine sulfoxide (alliin) in garlic, Allium sativum L. Food Sci. Biotechnol. 16:1–7.

    Article  CAS  Google Scholar 

  • Chung, L.Y. 2006. The antioxidant properties of garlic compounds: Allyl cysteine, alliin, allicin, and allyl disulfide. J. Med. Food 9:205–213.

    Article  CAS  PubMed  Google Scholar 

  • Corzo-Martinez, M., N. Corzo, and M. Villamiel. 2007. Biological properties of onions and garlic. Trends Food Sci. Tech. 18:609–625.

    Article  CAS  Google Scholar 

  • Das, N.P. and T.A. Pereira. 1990. Effects of flavonoids on thermal auto-oxidation of Palm oil: Structure-activity relationship. J. Amer. Oil Chem. Soc. 67:255–258.

    Article  CAS  Google Scholar 

  • Fenwick, G.R. and A.B. Hanley. 1985. The genus Allium. Crit. Rev. Food Sci. Nutr. 22:273–377.

    Article  CAS  PubMed  Google Scholar 

  • Food and Agricultural Organization of the United Nations (FAO). 2011. Crop production garlic FAOSTAT. http://faostat.fao.org/site/339/default.aspx.

    Google Scholar 

  • Gliszczynska-Swiglo, A., E. Ciska, K. Pawlak-Lemanska, J. Chmielewski, T. Borkowski, and B. Tyrakowska. 2006. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit. Contam. 23:1088–1098.

    Article  CAS  PubMed  Google Scholar 

  • Gorinstein, S., H. Leontowicz, M. Leontowicz, J. Namiesnik, K. Najman, J. Drzewiecki, M. Cvikrova, O. Martincova, E. Katrich, and S. Trakhtenberg. 2008. Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols. J. Agric. Food Chem. 56:4418–4426.

    Article  CAS  PubMed  Google Scholar 

  • George, S., P. Brat, P. Alter, and M.J. Amiot. 2005. Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 53:1370–1373.

    Article  CAS  PubMed  Google Scholar 

  • Hounsome, N., B. Hounsome, D. Tomos, and G. Edwards-Jones. 2009. Changes in antioxidant compounds in white cabbage during winter storage. Postharvest Biol. Technol. 52:173–179.

    Article  CAS  Google Scholar 

  • Kaur, C. and H.C. Kapoor. 2001. Antioxidants in fruits and vegetables — The millennium’s health. Int. J. Food Sci. Technol. 36:703–725.

    Article  CAS  Google Scholar 

  • Kim, S.M., K. Kubota, and A. Kobayashi. 1997. Antioxidative activity of sulfur-containing flavor compounds in garlic. Biosci. Biotechnol. Biochem. 61:1482–1485.

    Article  CAS  Google Scholar 

  • Koleva, I.I., T.A. van Beek, J.P.H. Linssen, A. de Groot, and L.N. Evstatieva. 2002. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal. 13:8–17.

    Article  CAS  PubMed  Google Scholar 

  • Korean Statistical Information Service (KOSIS). 2012. Agriculture, forestry and fishery survey. KOSIS, Daejeon, Korea.

    Google Scholar 

  • Kyung, K.H. 2012. Antimicrobial properties of Allium species. Curr. Opin. Biotechnol. 23:142–147.

    Article  CAS  PubMed  Google Scholar 

  • Miliauskas, G., P.R. Venskutonis, and T.A. van Beek. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85:231–237.

    Article  CAS  Google Scholar 

  • Marinova, D., F. Ribarova, and M. Atanassova. 2005. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Tech. Met. 40:255–260.

    CAS  Google Scholar 

  • Marsilio, V., C. Campestre, B. Lanza, and M. DeAngelis. 2001. Sugar and polyol compositions of some European olive fruit varieties (Olea europaea L.) suitable for table olive purposes. Food Chem. 72:485–490.

    Article  CAS  Google Scholar 

  • Masuda, R., K. Kaneko, and I. Yamashita. 1996. Sugar and cyclitol determination in vegetables by HPLC using post column fluorescent derivatization. J. Food Sci. 61:1186–1190.

    Article  CAS  Google Scholar 

  • Mayeux, P.R., K.C. Agrawal, J.S.H. Tou, B.T. King, H.L. Lippton, A.L. Hyman, P.J. Kadowiz, and D.B. McNamara. 1998. The pharmacological effects of allicin, a constituent of garlic oil. Agents Actions 25:182–190.

    Article  Google Scholar 

  • Naguib, A.E.M.M., F.K. El-Baz, Z.A. Salama, H.A.E.B. Hanaa, H.F. Ali, and A.A. Gaafar. 2012. Enhancement of phenolics, flavonoids and glucosinolates of Broccoli (Brassica olaracea, var. Italica) as antioxidants in response to organic and bio-organic fertilizers. J. Saudi Soc. Agric. Sciences 11:135–142.

    CAS  Google Scholar 

  • Nencini, C., A. Menchiari, G.G. Franchi, and L. Micheli. 2011. In vitro antioxidant activity of aged extracts of some Italian Allium species. Plant Foods Hum. Nutr. 66:11–16.

    Article  CAS  PubMed  Google Scholar 

  • Nuutila, A.M., R. Puupponen-Pimia, M. Aarni, and K.-M. Oksman-Caldentey. 2003. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 81:485–493.

    Article  CAS  Google Scholar 

  • Picchi, V., C. Migliori, R. Lo Scalo, G. Campanelli, V. Ferrari, and L.F. Di Cesare. 2012. Phytochemical content in organic and conventionally grown cauliflower. Food Chem. 130:501–509.

    Article  CAS  Google Scholar 

  • Pourcel, L., J.M. Routaboul, V. Cheynier, L. Lepiniec, and L. Debeaujon. 2006. Flavonoid oxidation in plants: From biochemical properties to physiological functions. Trends Plant Sci. 12:29–36.

    Article  PubMed  Google Scholar 

  • Queiroz, Y.S., E.Y. Ishimoto, D.H.M. Bastos, G.R. Sampaio, and E.A.F.S. Torres. 2009. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitro antioxidant activity. Food Chem. 115: 371–374.

    Article  CAS  Google Scholar 

  • Rabinkov, A., T. Miron, L. Konstantinovski, M. Wilchek, D. Mirelmen, and L. Weiner. 1998. The mode of action of allicin: Trapping of radicals and interaction with thiol containing proteins. Biochim. Biophys. Acta 1379:233–244.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, M.S. 2007. Allicin and other functional active components in garlic: Health benefits and bioavailability. Int. J. Food Prop. 10:245–268.

    Article  CAS  Google Scholar 

  • Rice-Evans, C., N.J. Miller, P.G. Bolwell, P.M. Bramley, and J.B. Pridham. 1995. The relative antioxidant activity of plant derived polyphenolic flavonoids. Free Radical Res. 22:375–383.

    Article  CAS  Google Scholar 

  • Rivlin, R. 2001. Historical perspective on the use of garlic. J. Nutr. 131:951S–954S.

    CAS  PubMed  Google Scholar 

  • Sangwan, A., A. Kawatra, and S. Sehgal. 2010. Chemical composition of garlic powder using different drying methods. Asian J. Home Sci. 5:90–93.

    Google Scholar 

  • Sendl, A., G. Elbl, B. Steinke, K. Redl, W. Breu, and H. Wagner. 1992. Comparative pharmacological investigations of Allium ursinum and Allium sativum. Planta Med. 58:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Shin, J.H., S.J. Lee, W.J. Jung, M.J. Kang, and N.J. Sung. 2011. Physicochemical characteristics of garlic (Allium sativum L.) on collected from the different regions. J. Agric. Life Sci. 45:103–114.

    Google Scholar 

  • Singleton, V.L. and J.A. Rossi, Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Viticult. 16:144–158.

    CAS  Google Scholar 

  • Spinola, V., B. Mendes, J.S. Camara, and P.C. Castilho. 2012. An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Anal. Bioanal. Chem. 403:1049–1058.

    Article  CAS  PubMed  Google Scholar 

  • Sterling, S.J. and R.D. Eagling. 2001. Agronomic and allicin yield of Australian grown garlic (Allium sativum). Acta Hort. 555:63–73.

    CAS  Google Scholar 

  • Tepe, B., M. Sokmen, H.A. Akpulat, and A. Sokmen. 2005. In vitro antioxidant activities of the methanol extracts of five Allium species from Turkey. Food Chem. 92:89–92.

    Article  CAS  Google Scholar 

  • Thaipong, K., U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, and D.H. Byrne. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19:669–675.

    Article  CAS  Google Scholar 

  • Thomson, M. and M. Ali. 2003. Garlic (Allium sativum): A review of its potential use as an anti-cancer agent. Curr. Cancer Drug Targets 3:67–81.

    Article  CAS  PubMed  Google Scholar 

  • Tsiaganis, M.C., K. Laskari, and E. Melissari. 2006. Fatty acid composition of Allium species lipids. J. Food Compos. Anal. 19:620–627.

    Article  CAS  Google Scholar 

  • Valko, M., C.J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160:1–40.

    Article  CAS  PubMed  Google Scholar 

  • Velisek, J., R. Kubec, and J. Davidek. 1997. Chemical composition and classification of culinary and pharmaceutical garlic-based products. Z. Lebensem Unters Forsch. A 204:161–164.

    Article  CAS  Google Scholar 

  • Zhou, K. and L. Yu. 2006. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT — Food Sci. Technol. 39:1155–1162.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Ho Kwak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, S.R., Yoon, M.K. & Kwak, JH. Contents of phytochemical constituents and antioxidant activity of 19 garlic (Allium sativum L.) parental lines and cultivars. Hortic. Environ. Biotechnol. 55, 138–147 (2014). https://doi.org/10.1007/s13580-014-0155-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-014-0155-x

Additional key words

Navigation