Skip to main content
Log in

UBR3 promotes inflammation and apoptosis via DUSP1/p38 pathway in the nucleus pulposus cells of patients with intervertebral disc degeneration

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Intervertebral disc disease (IDD) is a primary cause of low back pain, affecting 5% of individuals. Previous study have shown that dual-specificity (Thr/Tyr) phosphatase 1 (DUSP1) regulates p38 MAPK activity and DUSP1 level is regulated by ubiquitination. As an E3 ubiquitin-protein ligase, UBR3 has been shown to regulate a variety of biological processes through ubiquitination. However, the role of UBR3/DUSP1/p38 in IDD remains to be elucidated. In the current study, we found that UBR3 was significantly increased in the nucleus pulposus tissues of IDD patients and was correlated with IDD severity. Silencing UBR3 promoted the growth, inhibited apoptosis, and inhibited inflammation in primary NPCs. Mechanism study suggested that UBR3 exerted its effects through p38. Co-immunoprecipitation assay indicated that UBR3 promoted DUSP1 ubiquitination. Overexpression of DUSP1 reversed the effect of UBR3 overexpression. Our data also supported that UBR3 was positively correlated with p-p38, but negatively correlated with DUSP1 in IDD. In summary, UBR3 promotes inflammation and apoptosis via inhibiting the p38 signaling pathway by DUSP1 ubiquitination in the NPCs of IDD patients. These findings highlight the importance of UBR3/DUSP1/p38 signaling pathway in IDD and provide new insights for the prevention and treatment of IDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK. Intervertebral disk degeneration and repair. Neurosurgery. 2017;80:S46–54. https://doi.org/10.1093/neuros/nyw078.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo award in basic science. Spine. 2002;27:2631–44. https://doi.org/10.1097/00007632-200212010-00002.

    Article  PubMed  Google Scholar 

  3. Virtanen IM, Karppinen J, Taimela S, Ott J, Barral S, Kaikkonen K, Heikkila O, Mutanen P, Noponen N, Mannikko M, Tervonen O, Natri A, Ala-Kokko L. Occupational and genetic risk factors associated with intervertebral disc disease. Spine. 2007;32:1129–34. https://doi.org/10.1097/01.brs.0000261473.03274.5c.

    Article  PubMed  Google Scholar 

  4. Noponen-Hietala N, Virtanen I, Karttunen R, Schwenke S, Jakkula E, Li H, Merikivi R, Barral S, Ott J, Karppinen J, Ala-Kokko L. Genetic variations in IL6 associate with intervertebral disc disease characterized by sciatica. Pain. 2005;114:186–94. https://doi.org/10.1016/j.pain.2004.12.015.

    Article  CAS  PubMed  Google Scholar 

  5. Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S. Diversity of intervertebral disc cells: phenotype and function. J Anat. 2012;221:480–96. https://doi.org/10.1111/j.1469-7580.2012.01521.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine. 2004;29:2700–9. https://doi.org/10.1097/01.brs.0000146499.97948.52.

    Article  PubMed  Google Scholar 

  7. Molinos M, Almeida CR, Caldeira J, Cunha C, Goncalves RM, Barbosa MA. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface. 2015;12:20150429. https://doi.org/10.1098/rsif.2015.0429.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am. 2006;88(Suppl 2):10–4. https://doi.org/10.2106/JBJS.F.00019.

    Article  PubMed  Google Scholar 

  9. Sun JC, Zheng B, Sun RX, Meng YK, Wang SM, Yang HS, Chen Y, Shi JG, Guo YF. MiR-499a-5p suppresses apoptosis of human nucleus pulposus cells and degradation of their extracellular matrix by targeting SOX4. Biomed Pharmacother. 2019;113: 108652. https://doi.org/10.1016/j.biopha.2019.108652.

    Article  CAS  PubMed  Google Scholar 

  10. Guo W, Zhang B, Mu K, Feng SQ, Dong ZY, Ning GZ, Li HR, Liu S, Zhao L, Li Y, Yu BB, Duan HQ, Sun C, Li YJ. Circular RNA GRB10 as a competitive endogenous RNA regulating nucleus pulposus cells death in degenerative intervertebral disk. Cell Death Dis. 2018;9:319. https://doi.org/10.1038/s41419-017-0232-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayes AJ, Benjamin M, Ralphs JR. Extracellular matrix in development of the intervertebral disc. Matrix Biol. 2001;20:107–21. https://doi.org/10.1016/s0945-053x(01)00125-1.

    Article  CAS  PubMed  Google Scholar 

  12. Cabraja M, Endres M, Abbushi A, Zenclussen M, Blechschmidt C, Lemke AJ, Kroppenstedt S, Kaps C, Woiciechowsky C. Effect of degeneration on gene expression of chondrogenic and inflammatory marker genes of intervertebral disc cells: a preliminary study. J Neurosurg Sci. 2013;57:307–16.

    CAS  PubMed  Google Scholar 

  13. Li Z, Yu X, Liang J, Wu WK, Yu J, Shen J. Leptin downregulates aggrecan through the p38-ADAMST pathway in human nucleus pulposus cells. PLoS ONE. 2014;9: e109595. https://doi.org/10.1371/journal.pone.0109595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tian Y, Yuan W, Fujita N, Wang J, Wang H, Shapiro IM, Risbud MV. Inflammatory cytokines associated with degenerative disc disease control aggrecanase-1 (ADAMTS-4) expression in nucleus pulposus cells through MAPK and NF-kappaB. Am J Pathol. 2013;182:2310–21. https://doi.org/10.1016/j.ajpath.2013.02.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vo NV, Hartman RA, Yurube T, Jacobs LJ, Sowa GA, Kang JD. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J. 2013;13:331–41. https://doi.org/10.1016/j.spinee.2012.02.027.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Le Maitre CL, Freemont AJ, Hoyland JA. Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol. 2004;204:47–54. https://doi.org/10.1002/path.1608.

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Wang B, Zou M, Li J, Lu G, Zhang Q, Liu F, Lu C. CircSEMA4B targets miR-431 modulating IL-1beta-induced degradative changes in nucleus pulposus cells in intervertebral disc degeneration via Wnt pathway. Biochim Biophys Acta Mol Basis Dis. 2018;1864:3754–68. https://doi.org/10.1016/j.bbadis.2018.08.033.

    Article  CAS  PubMed  Google Scholar 

  18. Wuertz K, Vo N, Kletsas D, Boos N. Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-kappaB and MAP kinases. Eur Cell Mater. 2012;23:103–19. https://doi.org/10.22203/ecm.v023a08.

    Article  CAS  PubMed  Google Scholar 

  19. Hiyama A, Sakai D, Mochida J. Cell signaling pathways related to pain receptors in the degenerated disk. Global Spine J. 2013;3:165–74. https://doi.org/10.1055/s-0033-1345036.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49. https://doi.org/10.1038/sj.onc.1207556.

    Article  CAS  PubMed  Google Scholar 

  21. Werlen G, Hausmann B, Naeher D, Palmer E. Signaling life and death in the thymus: timing is everything. Science. 2003;299:1859–63. https://doi.org/10.1126/science.1067833.

    Article  CAS  PubMed  Google Scholar 

  22. Studer RK, Aboka AM, Gilbertson LG, Georgescu H, Sowa G, Vo N, Kang JD. p38 MAPK inhibition in nucleus pulposus cells: a potential target for treating intervertebral disc degeneration. Spine. 2007;32:2827–33. https://doi.org/10.1097/BRS.0b013e31815b757a.

    Article  PubMed  Google Scholar 

  23. Dong ZH, Wang DC, Liu TT, Li FH, Liu RL, Wei JW, Zhou CL. The roles of MAPKs in rabbit nucleus pulposus cell apoptosis induced by high osmolality. Eur Rev Med Pharmacol Sci. 2014;18:2835–45. https://doi.org/10.1055/s-0034-1376584.

    Article  PubMed  Google Scholar 

  24. Hoppstadter J, Ammit AJ. Role of dual-specificity phosphatase 1 in glucocorticoid-driven anti-inflammatory responses. Front Immunol. 2019;10:1446. https://doi.org/10.3389/fimmu.2019.01446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC, Lang R. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med. 2006;203:15–20. https://doi.org/10.1084/jem.20051753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McGuire VA, Rosner D, Ananieva O, Ross EA, Elcombe SE, Naqvi S, van den Bosch MMW, Monk CE, Ruiz-Zorrilla Diez T, Clark AR, Arthur JSC. Beta interferon production is regulated by p38 mitogen-activated protein kinase in macrophages via both MSK1/2- and tristetraprolin-dependent pathways. Mol Cell Biol. 2017. https://doi.org/10.1128/MCB.00454-16.

    Article  PubMed  Google Scholar 

  27. Auger-Messier M, Accornero F, Goonasekera SA, Bueno OF, Lorenz JN, van Berlo JH, Willette RN, Molkentin JD. Unrestrained p38 MAPK activation in Dusp1/4 double-null mice induces cardiomyopathy. Circ Res. 2013;112:48–56. https://doi.org/10.1161/CIRCRESAHA.112.272963.

    Article  CAS  PubMed  Google Scholar 

  28. Gil-Araujo B, Toledo Lobo MV, Gutierrez-Salmeron M, Gutierrez-Pitalua J, Ropero S, Angulo JC, Chiloeches A, Lasa M. Dual specificity phosphatase 1 expression inversely correlates with NF-kappaB activity and expression in prostate cancer and promotes apoptosis through a p38 MAPK dependent mechanism. Mol Oncol. 2014;8:27–38. https://doi.org/10.1016/j.molonc.2013.08.012.

    Article  CAS  PubMed  Google Scholar 

  29. Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol. 2005;6:599–609. https://doi.org/10.1038/nrm1700.

    Article  CAS  PubMed  Google Scholar 

  30. Xie P, Guo S, Fan Y, Zhang H, Gu D, Li H. Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK activation. J Biol Chem. 2009;284:5488–96. https://doi.org/10.1074/jbc.M806487200.

    Article  CAS  PubMed  Google Scholar 

  31. Calvisi DF, Pinna F, Meloni F, Ladu S, Pellegrino R, Sini M, Daino L, Simile MM, De Miglio MR, Virdis P, Frau M, Tomasi ML, Seddaiu MA, Muroni MR, Feo F, Pascale RM. Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma. Cancer Res. 2008;68:4192–200. https://doi.org/10.1158/0008-5472.CAN-07-6157.

    Article  CAS  PubMed  Google Scholar 

  32. Saurabh K, Shah PP, Doll MA, Siskind LJ, Beverly LJ. UBR-box containing protein, UBR5, is over-expressed in human lung adenocarcinoma and is a potential therapeutic target. BMC Cancer. 2020;20:824. https://doi.org/10.1186/s12885-020-07322-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sultana R, Theodoraki MA, Caplan AJ. UBR1 promotes protein kinase quality control and sensitizes cells to Hsp90 inhibition. Exp Cell Res. 2012;318:53–60. https://doi.org/10.1016/j.yexcr.2011.09.010.

    Article  CAS  PubMed  Google Scholar 

  34. Meisenberg C, Tait PS, Dianova II, Wright K, Edelmann MJ, Ternette N, Tasaki T, Kessler BM, Parsons JL, Kwon YT, Dianov GL. Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability. Nucleic Acids Res. 2012;40:701–11. https://doi.org/10.1093/nar/gkr744.

    Article  CAS  PubMed  Google Scholar 

  35. Li T, Giagtzoglou N, Eberl DF, Jaiswal SN, Cai T, Godt D, Groves AK, Bellen HJ. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals. Elife. 2016. https://doi.org/10.7554/eLife.15258.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li Z, Shen J, Wu WK, Yu X, Liang J, Qiu G, Liu J. Leptin induces cyclin D1 expression and proliferation of human nucleus pulposus cells via JAK/STAT, PI3K/Akt and MEK/ERK pathways. PLoS ONE. 2012;7: e53176. https://doi.org/10.1371/journal.pone.0053176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen HF, Chuang HC, Tan TH. regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20112668.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li T, Fan J, Blanco-Sanchez B, Giagtzoglou N, Lin G, Yamamoto S, Jaiswal M, Chen K, Zhang J, Wei W, Lewis MT, Groves AK, Westerfield M, Jia J, Bellen HJ. Ubr3, a novel modulator of Hh signaling affects the degradation of costal-2 and Kif7 through poly-ubiquitination. PLoS Genet. 2016;12: e1006054. https://doi.org/10.1371/journal.pgen.1006054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rao CV, Asch AS, Yamada HY. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer. Carcinogenesis. 2017;38:2–11. https://doi.org/10.1093/carcin/bgw118.

    Article  CAS  PubMed  Google Scholar 

  40. Bermudez O, Pages G, Gimond C. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am J Physiol Cell Physiol. 2010;299:C189-202. https://doi.org/10.1152/ajpcell.00347.2009.

    Article  CAS  PubMed  Google Scholar 

  41. Liu F, Gore AJ, Wilson JL, Korc M. DUSP1 is a novel target for enhancing pancreatic cancer cell sensitivity to gemcitabine. PLoS ONE. 2014;9: e84982. https://doi.org/10.1371/journal.pone.0084982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu YX, Wang J, Guo J, Wu J, Lieberman HB, Yin Y. DUSP1 is controlled by p53 during the cellular response to oxidative stress. Mol Cancer Res. 2008;6:624–33. https://doi.org/10.1158/1541-7786.MCR-07-2019.

    Article  CAS  PubMed  Google Scholar 

  43. Choi BH, Hur EM, Lee JH, Jun DJ, Kim KT. Protein kinase Cdelta-mediated proteasomal degradation of MAP kinase phosphatase-1 contributes to glutamate-induced neuronal cell death. J Cell Sci. 2006;119:1329–40. https://doi.org/10.1242/jcs.02837.

    Article  CAS  PubMed  Google Scholar 

  44. Schieven GL. The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem. 2005;5:921–8. https://doi.org/10.2174/1568026054985902.

    Article  CAS  PubMed  Google Scholar 

  45. Saha RN, Jana M, Pahan K. MAPK p38 regulates transcriptional activity of NF-kappaB in primary human astrocytes via acetylation of p65. J Immunol. 2007;179:7101–9. https://doi.org/10.4049/jimmunol.179.10.7101.

    Article  CAS  PubMed  Google Scholar 

  46. Nasto LA, Seo HY, Robinson AR, Tilstra JS, Clauson CL, Sowa GA, Ngo K, Dong Q, Pola E, Lee JY, Niedernhofer LJ, Kang JD, Robbins PD, Vo NV. ISSLS prize winner: inhibition of NF-kappaB activity ameliorates age-associated disc degeneration in a mouse model of accelerated aging. Spine. 2012;37:1819–25. https://doi.org/10.1097/BRS.0b013e31824ee8f7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Daniels J, Binch AA, Le Maitre CL. Inhibiting IL-1 signaling pathways to inhibit catabolic processes in disc degeneration. J Orthop Res. 2017;35:74–85. https://doi.org/10.1002/jor.23363.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by Jiangsu Health International Exchange Program of Jiangsu Commission of Health (JSH-2018-017) and scientific research project of Jiangsu Commission of Health (Z2020006).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to conception and design, acquisition of data, interpretation of data, and writing the article.

Corresponding authors

Correspondence to Zhihong Cao or Qiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, and was approved by the Institutional Ethical Review Committee of the Affiliated Yixing Hospital of Jiangsu University. All patients filled out informed consent forms before sampling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 483 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Zhao, Q., Chen, L. et al. UBR3 promotes inflammation and apoptosis via DUSP1/p38 pathway in the nucleus pulposus cells of patients with intervertebral disc degeneration. Human Cell 35, 792–802 (2022). https://doi.org/10.1007/s13577-022-00693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00693-6

Keywords

Navigation