Skip to main content

Advertisement

Log in

Overexpression of long noncoding RNA MCM3AP-AS1 promotes osteogenic differentiation of dental pulp stem cells via miR-143-3p/IGFBP5 axis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

MCM3AP-AS1 regulates the cartilage repair in osteoarthritis, but how it regulates osteogenic differentiation of dental pulp stem cells (DPSCs) remains to be determined. DPSCs were isolated and induced for osteogenic differentiation. MCM3AP-AS1 expression was increased along with the osteogenic differentiation of DPSCs, whose expression was positive correlated with those of OCN, alkaline phosphatase (ALP) and RUNX2. On contrary, miR-143-3p expression was decreased along with the osteogenic differentiation and was negatively correlated with those of OCN, ALP and RUNX2. Dual-luciferase reporter gene assay showed that miR-143-3p can be negatively regulated by MCM3AP-AS1 and can regulate IGFBP5. MCM3AP-AS1 overexpression increased the expression levels of osteogenesis-specific genes, ALP activity and mineralized nodules during DPSC osteogenic differentiation, while IGFBP5 knockdown or miR-143-3p overexpression counteracted the effect of MCM3AP-AS1 overexpression in DPSCs. Therefore, this study demonstrated the role of MCM3AP-AS1/miR-143-3p/IGFBP5 axis in regulating DPSC osteogenic differentiation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311:1880–5.

    Article  CAS  Google Scholar 

  2. Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010;43:55–62.

    Article  Google Scholar 

  3. Liu S, Zhou J, Zhang X, et al. Strategies to optimize adult stem cell therapy for tissue regeneration. Int J Mol Sci. 2016;17:982.

    Article  Google Scholar 

  4. Pisciotta A, Carnevale G, Meloni S, et al. Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Dev Biol. 2015;15:14.

    Article  Google Scholar 

  5. Marrelli M, Codispoti B, Shelton RM, et al. Dental pulp stem cell mechanoresponsiveness: effects of mechanical stimuli on dental pulp stem cell behavior. Front Physiol. 2018;9:1685.

    Article  Google Scholar 

  6. Nuti N, Corallo C, Chan BM, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12:511–23.

    Article  CAS  Google Scholar 

  7. Yu L, Qu H, Yu Y, Li W, Zhao Y, Qiu G. LncRNA-PCAT1 targeting miR-145-5p promotes TLR4-associated osteogenic differentiation of adipose-derived stem cells. J Cell Mol Med. 2018;22:6134–47.

    Article  CAS  Google Scholar 

  8. Jia B, Qiu X, Chen J, et al. A feed-forward regulatory network lncPCAT1/miR-106a-5p/E2F5 regulates the osteogenic differentiation of periodontal ligament stem cells. J Cell Physiol. 2019;234:19523–38.

    Article  CAS  Google Scholar 

  9. Wu Y, Lian K, Sun C. LncRNA LEF1-AS1 promotes osteogenic differentiation of dental pulp stem cells via sponging miR-24-3p. Mol Cell Biochem. 2020;475:161–9.

    Article  CAS  Google Scholar 

  10. Zhao LD, Xu WC, Cui J, et al. Long non-coding RNA maternally expressed gene 3 inhibits osteogenic differentiation of human dental pulp stem cells via microRNA-543/smad ubiquitin regulatory factor 1/runt-related transcription factor 2 axis. Arch Oral Biol. 2020;118:104838.

    Article  CAS  Google Scholar 

  11. Liang M, Jia J, Chen L, et al. LncRNA MCM3AP-AS1 promotes proliferation and invasion through regulating miR-211-5p/SPARC axis in papillary thyroid cancer. Endocrine. 2019;65:318–26.

    Article  CAS  Google Scholar 

  12. Wang Y, Yang L, Chen T, et al. A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Mol Cancer. 2019;18:28.

    Article  Google Scholar 

  13. Yang M, Sun S, Guo Y, Qin J, Liu G. Long non-coding RNA MCM3AP-AS1 promotes growth and migration through modulating FOXK1 by sponging miR-138-5p in pancreatic cancer. Mol Med. 2019;25:55.

    Article  CAS  Google Scholar 

  14. Shi J, Cao F, Chang Y, et al. Long non-coding RNA MCM3AP-AS1 protects chondrocytes ATDC5 and CHON-001 from IL-1beta-induced inflammation via regulating miR-138-5p/SIRT1. Bioengineered. 2021;12:1445–56.

    Article  CAS  Google Scholar 

  15. Alkan AH, Akgul B. Endogenous miRNA sponges. Methods Mol Biol. 2022;2257:91–104.

    Article  Google Scholar 

  16. Wen J, Han S, Cui M, Wang Y. Long noncoding RNA MCM3APAS1 drives ovarian cancer progression via the microRNA1433p/TAK1 axis. Oncol Rep. 2020;44:1375–84.

    Article  CAS  Google Scholar 

  17. Wu L, Song J, Xue J, et al. MircoRNA-143-3p regulating ARL6 is involved in the cadmium-induced inhibition of osteogenic differentiation in human bone marrow mesenchymal stem cells. Toxicol Lett. 2020;331:159–66.

    Article  CAS  Google Scholar 

  18. Yang Z, Wang J, Pan Z, Zhang Y. miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Exp Ther Med. 2018;15:3781–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Beattie J, Allan GJ, Lochrie JD, Flint DJ. Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J. 2006;395:1–19.

    Article  CAS  Google Scholar 

  20. Wang Y, Jia Z, Diao S, et al. IGFBP5 enhances osteogenic differentiation potential of periodontal ligament stem cells and Wharton’s jelly umbilical cord stem cells, via the JNK and MEK/Erk signalling pathways. Cell Prolif. 2016;49:618–27.

    Article  CAS  Google Scholar 

  21. Burja B, Kuret T, Janko T, et al. Olive leaf extract attenuates inflammatory activation and DNA damage in human arterial endothelial cells. Front Cardiovasc Med. 2019;6:56.

    Article  CAS  Google Scholar 

  22. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg. 2013;71(1758):e1-13.

    Google Scholar 

  23. Xia Y, Chen H, Zhang F, et al. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Artif Cells Nanomed Biotechnol. 2018;46:423–33.

    Article  CAS  Google Scholar 

  24. Rapino M, Di Valerio V, Zara S, et al. Chitlac-coated thermosets enhance osteogenesis and angiogenesis in a co-culture of dental pulp stem cells and endothelial cells. Nanomaterials (Basel). 2019;9:928.

    Article  CAS  Google Scholar 

  25. Heng BC, Wang S, Gong T, Xu J, Yuan C, Zhang C. EphrinB2 signaling enhances osteogenic/odontogenic differentiation of human dental pulp stem cells. Arch Oral Biol. 2018;87:62–71.

    Article  CAS  Google Scholar 

  26. Goto N, Fujimoto K, Fujii S, et al. Role of MSX1 in osteogenic differentiation of human dental pulp stem cells. Stem Cells Int. 2016;2016:8035759.

    Article  Google Scholar 

  27. Li X, Yu M, Yang C. YY1-mediated overexpression of long noncoding RNA MCM3AP-AS1 accelerates angiogenesis and progression in lung cancer by targeting miR-340-5p/KPNA4 axis. J Cell Biochem. 2020;121:2258–67.

    Article  CAS  Google Scholar 

  28. Yang C, Zheng J, Xue Y, et al. The effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 axis regulating glioblastoma angiogenesis. Front Mol Neurosci. 2017;10:437.

    Article  Google Scholar 

  29. Zhang H, Luo C, Zhang G. LncRNA MCM3AP-AS1 regulates epidermal growth factor receptor and autophagy to promote hepatocellular carcinoma metastasis by interacting with miR-455. DNA Cell Biol. 2019;38:857–64.

    Article  CAS  Google Scholar 

  30. Bratus-Neuenschwander A, Castro-Giner F, Frank-Bertoncelj M, et al. Pain-associated transcriptome changes in synovium of knee osteoarthritis patients. Genes (Basel). 2018;9:338.

    Article  Google Scholar 

  31. Park S, Lee M, Chun CH, Jin EJ. The lncRNA, Nespas, is associated with osteoarthritis progression and serves as a potential new prognostic biomarker. Cartilage. 2019;10:148–56.

    Article  CAS  Google Scholar 

  32. Liao C, Zhou Y, Li M, Xia Y, Peng W. LINC00968 promotes osteogenic differentiation in vitro and bone formation in vivo via regulation of miR-3658/RUNX2. Differentiation. 2020;116:1–8.

    Article  CAS  Google Scholar 

  33. Jia Q, Chen X, Jiang W, Wang W, Guo B, Ni L. The regulatory effects of long noncoding RNA-ANCR on dental tissue-derived stem cells. Stem Cells Int. 2016;2016:3146805.

    Article  Google Scholar 

  34. Jia B, Zhang Z, Qiu X, et al. Analysis of the miRNA and mRNA involved in osteogenesis of adipose-derived mesenchymal stem cells. Exp Ther Med. 2018;16:1111–20.

    PubMed  PubMed Central  Google Scholar 

  35. Carthew J, Donderwinkel I, Shrestha S, Truong VX, Forsythe JS, Frith JE. In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells. Acta Biomater. 2020;101:249–61.

    Article  CAS  Google Scholar 

  36. Wangzhou K, Lai Z, Lu Z, et al. MiR-143–3p inhibits osteogenic differentiation of human periodontal ligament cells by targeting KLF5 and inactivating the Wnt/beta-catenin pathway. Front Physiol. 2020;11:606967.

    Article  Google Scholar 

  37. Liu D, Wang Y, Jia Z, et al. Demethylation of IGFBP5 by histone demethylase KDM6B promotes mesenchymal stem cell-mediated periodontal tissue regeneration by enhancing osteogenic differentiation and anti-inflammation potentials. Stem Cells. 2015;33:2523–36.

    Article  CAS  Google Scholar 

  38. Hao J, Yang H, Cao Y, Zhang C, Fan Z. IGFBP5 enhances the dentinogenesis potential of dental pulp stem cells via JNK and ErK signalling pathways. J Oral Rehabil. 2020;47:1557–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for all the contributors and participants.

Funding

Thanks for the grants from the Xiamen Science and Technology Planned Project of Medical Health (No. 3502Z20194079), Medical Health Research project of Youth in Fujian Province (2019-2-56), Medical Health Research project in Fujian Province (2019-2-55) and Fujian Province Educational Science “13th Five-Year Plan” 2020 Project (No. FJJKCG20-015).

Author information

Authors and Affiliations

Authors

Contributions

CY is the guarantor of integrity of the entire study and contributed to the experimental studies and manuscript preparation. LY: contributed to the experimental studies. XX: contributed to the manuscript preparation and statistical analysis. PL: contributed to the experimental studies. BL: contributed to the experimental studies and manuscript preparation. SL: contributed to the analysis and interpretation of data. HH: contributed to the literature research. JZ: contributed to the data acquisition and literature research. MH: contributed to the statistical analysis. SP and QW: drafted the article and revised it critically. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Lu Yin.

Ethics declarations

Conflict of interests

The authors declare there is no conflict of interests.

Ethics declarations

The extraction of mandibular third molars was performed with the permission of the Ethics Committee of Stomatological Hospital of Xiamen Medical College & Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, and the study is provided with informed consent of all participants.

Informed consent

Informed consent was obtained from all the subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Xu, X., Lin, P. et al. Overexpression of long noncoding RNA MCM3AP-AS1 promotes osteogenic differentiation of dental pulp stem cells via miR-143-3p/IGFBP5 axis. Human Cell 35, 150–162 (2022). https://doi.org/10.1007/s13577-021-00648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00648-3

Keywords

Navigation