Skip to main content

Advertisement

Log in

The protective effects of Agomelatine against Aβ1-42 oligomers-induced cellular senescence mediated by SIRT6 and Agomelatine’s potential in AD treatment

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a vicious degenerative disease commonly observed in the elderly population, and the deposition of Amyloid β (Aβ) is regarded as the principal pathological inducement of AD. Severe oxidative stress, inflammatory reactions, and cell senescence in neurons can be induced by Aβ1-42 oligomers, which further contribute to the damage on neurons. Agomelatine is an antidepressant that is recently claimed to have promising anti-oxidative stress and anti-inflammatory effects. The present study aims to explore the potential therapeutic function of Agomelatine on AD and the possible mechanism. Aβ1-42 oligomers were used to induce an in vitro injury model in SH-SY5Y neuronal cells. First, we found that exposure to Aβ1-42 oligomers significantly exacerbated oxidative stress by increasing hydrogen peroxide production and reducing glutathione peroxidase (GPx), which were partially rescued by Agomelatine. Also, Agomelatine attenuated Aβ1-42 oligomers-induced inflammatory response by decreasing the expression of TNF-α and IL-1β. Notably, Agomelatine improved cellular senescence by reducing senescence-associated β-galactosidase (SA-β-Gal) staining and mitigating Aβ1-42 oligomers-induced reduction of telomerase activity. In addition, the upregulated p16INK4A and p21CIP1 and the suppressed expression of SIRT6 in Aβ1-42 oligomers-treated cells were reversed by Agomelatine. Lastly, after the knockdown of SIRT6, the protective effect of Agomelatine against Aβ1-42 oligomers-induced cellular senescence was significantly eliminated. In conclusion, our data indicated that Agomelatine ameliorated Aβ1-42 oligomers-induced cellular senescence mediated by SIRT6, and thus, Agomelatine could be effective in treating AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang J, Sandberg A, Konsmo A, Wu X, Nystrom S, Nilsson KPR, et al. Detection and imaging of Abeta1-42 and tau fibrils by redesigned fluorescent X-34 analogs. Chemistry. 2018;24:7210–6.

    Article  CAS  PubMed  Google Scholar 

  2. Husain I, Akhtar M, Vohora D, Abdin MZ, Islamuddin M, Akhtar MJ, et al. Rosuvastatin attenuates high-salt and cholesterol diet-induced neuroinflammation and cognitive impairment via preventing nuclear factor KappaB Pathway. Neurochem Res. 2017;42:2404–16.

    Article  CAS  PubMed  Google Scholar 

  3. Rangachari V, Dean DN, Rana P, Vaidya A, Ghosh P. Cause and consequence of Abeta—Lipid interactions in Alzheimer disease pathogenesis. Biochim Biophys Acta Biomembr. 2018;1860:1652–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bignante EA, Ponce NE, Heredia F, Musso J, Krawczyk MC, Millan J, et al. APP/Go protein G beta gamma-complex signaling mediates Abeta degeneration and cognitive impairment in Alzheimer’s disease models. Neurobiol Aging. 2018;64:44–57.

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Guan S, Liu C, Chen X, Zhu Y, Xie Y, et al. Neuroprotective effects of Coptis Chinensis Franch polysaccharide on amyloid-beta (Abeta)-induced toxicity in a transgenic Caenorhabditis elegans model of Alzheimer’s disease (AD). Int J Biol Macromol. 2018;113:991–5.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L, Trushin S, Christensen TA, Tripathi U, Hong C, Geroux RE, et al. The differential effect of amyloid-beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis. 2018;114:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark LR, Berman SE, Norton D, Koscik RL, Jonaitis E, Blennow K, et al. Age-accelerated cognitive decline in asymptomatic adults with CSF beta-amyloid. Neurology. 2018;90:e1306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le Page A, Dupuis G, Frost EH, Larbi A, Pawelec G, Witkowski JM, et al. Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp Gerontol. 2018;107:59–66.

    Article  PubMed  CAS  Google Scholar 

  9. Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 2002;40:133–9.

    Article  PubMed  Google Scholar 

  10. Song XM, Yu Q, Dong X, Yang HO, Zeng KW, Li J, et al. Aldose reductase inhibitors attenuate beta-amyloid-induced TNF-alpha production in microglia via ROS-PKC-mediated NF-kappaB and MAPK pathways. Int Immunopharmacol. 2017;50:307.

    Article  CAS  Google Scholar 

  11. Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun. 2018;69:351–63.

    Article  CAS  PubMed  Google Scholar 

  12. Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med. 2013;62:90–101.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, et al. Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019;22:719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Z, Gao J, Zhou J, Liu H, Xu C. Olaparib induced senescence under P16 or P53 dependent manner in ovarian cancer. J Gynecol Oncol. 2019;30:e26.

    Article  CAS  PubMed  Google Scholar 

  15. Choi YJ, Lee JY, Chung CP, Park YJ. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53–p21(Cip1) pathway and restores osteoblastic differentiation in human dental pulp stem cells. Int J Nanomedicine. 2012;7:5091–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Guardiola-Lemaitre B, De Bodinat C, Delagrange P, Millan MJ, Munoz C, Mocaer E. Agomelatine: mechanism of action and pharmacological profile to antidepressant properties. Br J Pharmacol. 2014;171:3604–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol. 2016;56:361–83.

    Article  CAS  PubMed  Google Scholar 

  18. Audinot V, Mailliet F, Lahaye-Brasseur C, Bonnaud A, Le Gall A, Amosse C, et al. New selective ligands of human cloned melatonin MT1 and MT2 receptors. Naunyn Schmiedebergs Arch Pharmacol. 2003;367:553–61.

    Article  CAS  PubMed  Google Scholar 

  19. Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y human neuroblastoma cell line. J Vis Exp. 2016;108:53193.

    Google Scholar 

  20. Kovalevich J, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol. 2013;1078:9–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nielsen HM, Mulder SD, Belien JA, Musters RJ, Eikelenboom P, Veerhuis R. Astrocytic A beta 1–42 uptake is determined by A beta-aggregation state the presence of amyloid-associated proteins. Glia. 2010;58:1235–46.

    Article  PubMed  Google Scholar 

  22. Tran HTT, Herz C, Lamy E. Long-term exposure to “low-dose” bisphenol A decreases mitochondrial DNA copy number and accelerates telomere shortening in human CD8 + T cells. Sci Rep. 2020;10(1):15786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Liu TE, Pan W, Chi H, Chen J, Yu Z, et al. Small molecule compounds alleviate anisomycin-induced oxidative stress injury in SH-SY5Y cells via downregulation of p66shc and Abeta1-42 expression. Exp Ther Med. 2016;11:593–600.

    Article  PubMed  CAS  Google Scholar 

  24. Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation. 2008;5:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kritsilis M, Rizou SV, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Aging, cellular senescence, and neurodegenerative disease. Int J Mol Sci. 2018;19:2937.

    Article  PubMed Central  CAS  Google Scholar 

  26. Ohtani N, Yamakoshi K, Takahashi A, Hara E. The p16INK4a-RB pathway: a molecular link between cellular senescence and tumor suppression. J Med Invest. 2004;51:146–53.

    Article  PubMed  Google Scholar 

  27. Zhang W, Chan HM, Gao Y, Poon R, Wu Z. BS69 is involved in cellular senescence through the p53–p21Cip1 pathway. EMBO Rep. 2007;8:952–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao G, Wang H, Xu C, Wang P, Chen J, Wang P, et al. SIRT6 delays cellular senescence by promoting p27Kip1 ubiquitin-proteasome degradation. Aging (Albany NY). 2016;8:2308–23.

    Article  CAS  Google Scholar 

  29. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Beher D, Masters CL, et al. Reactive oxygen species and Alzheimer’s disease. Biochem Pharmacol. 1997;54:5339.

    Article  Google Scholar 

  31. Polidori MC. Oxidative stress and risk factors for Alzheimer’s disease: cluesto prevention and therapy. J Alzheimers Dis. 2004;6:185–91.

    Article  CAS  PubMed  Google Scholar 

  32. LaFontaine MA, Mattson MP, Butterfield DA. Oxidative stress in synaptosomal proteins from mutant presenilin-1 knock-in mice: implications for familial Alzheimer’s disease. Neurochem Res. 2002;27:417–21.

    Article  CAS  PubMed  Google Scholar 

  33. Bellucci A, Luccarini I, Scali C, Prosperi C, Giovannini MG, Pepeu G, et al. Cholinergic dysfunction, neuronal damage, and axonal loss in TgCRND8 mice. Neurobiol Dis. 2006;23:260–72.

    Article  CAS  PubMed  Google Scholar 

  34. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE. Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol. 1998;153:725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Budni J, Feijo DP, Batista-Silva H, Garcez ML, Mina F, Belletini-Santos T, et al. Lithium, and memantine improve spatial memory impairment andneuroinflammation induced by beta-amyloid1-42 oligomers in rats. Neurobiol Learn Mem. 2017;141:84–92.

    Article  CAS  PubMed  Google Scholar 

  36. Masaldan S, Belaidi AA, Ayton S, Bush AI. Cellular senescence and iron dyshomeostasis in alzheimer’s disease. Pharmaceut (Basel). 2019;12:93.

    Article  CAS  Google Scholar 

  37. Luo C, Zhou S, Zhou Z, Liu Y, Yang L, Liu J, et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J Am Soc Nephrol. 2018;29:1238–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang H, Wang H, Ren J, Chen Q, Chen ZJ. cGAS is essential for cellular senescence. Proc Natl Acad Sci USA. 2017;114:E4612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manu KA, Cao PHA, Chai TF, Casey PJ, Wang M. p21cip1/waf1 coordinate autophagy, proliferation and apoptosis in response to metabolic stress. Cancers (Basel). 2019;11:1112.

    Article  CAS  Google Scholar 

  40. Singh Angom R, Wang Y, Wang E, Pal K, Bhattacharya S, Watzlawik JO, et al. VEGF receptor-1 modulates amyloid-beta 1–42 oligomer-induced senescence in brain endothelial cells. FASEB J. 2019;33:4626–37.

    Article  PubMed  Google Scholar 

  41. Lee N, Ryu HG, Kwon JH, Kim DK, Kim SR, Wang HJ, et al. SIRT6 depletion suppresses tumor growth by promoting cellular senescence induced by DNA damage in HCC. PLoS ONE. 2016;11:e0165835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Grootaert MOJ, Finigan A, Figg NL, Uryga AK, Bennett MR. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis. Circ Res. 2021;128:474–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Technology Ministry of Sichuan Province (2019ZYZF0063, 2020yj0497, and 2019yyjskf06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhonglin Wang or Jianhong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zheng, B., Yang, S. et al. The protective effects of Agomelatine against Aβ1-42 oligomers-induced cellular senescence mediated by SIRT6 and Agomelatine’s potential in AD treatment. Human Cell 34, 1734–1743 (2021). https://doi.org/10.1007/s13577-021-00611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00611-2

Keywords

Navigation