Skip to main content

Advertisement

Log in

Emerging roles of circUBAP2 targeting miR-370-3p in proliferation, apoptosis, and invasion of papillary thyroid cancer cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) have been documented to be aberrantly expressed in many types of malignancies and involved in cancer progression. However, their role in thyroid cancer (TC) remains largely unknown. Our study aimed to explore the role and mechanism of circUBAP2 in TC. The differentially expressed circRNAs in TC tissues were identified using GSE18105 from gene expression omnibus (GEO) database. CircUBAP2 and miR-370-3p expression was analyzed using qRT-PCR. The stability of circUBAP2 was confirmed by actinomycin D and RNase R. The subcellular localization of circUBAP2 was detected using cell fractionation assay. Cell proliferation, apoptosis, and invasion were evaluated using MTT, flow cytometry analysis, and Transwell invasion assay, respectively. The interaction between circUBAP2 and miR-370-3p was predicted using bioinformatics analysis and validated by luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation. CircUBAP2 was upregulated and miR-370-3p was downregulated in TC tissues and cells. CircUBAP2 was highly stable, resistant to RNase R digestion, and predominantly localized in the cytoplasm. CircUBAP2 knockdown inhibited cell proliferation and invasion and triggered apoptosis in TC cells. Bioinformatics analysis showed that circUBAP2 contained putative binding sites of miR-370-3p. CircUBAP2 acted as a sponge to inhibit miR-370-3p expression. Mechanistically, miR-370-3p inhibition abolished the effects of circUBAP2 on proliferation, apoptosis, and invasion in TC cells. Taken together, CircUBAP2 knockdown impeded the proliferation and invasion and induced apoptosis in TC cells via sponging miR-370-3p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nat Rev Endocrinol. 2016;12:646–53.

    Article  PubMed  Google Scholar 

  2. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388:2783–95.

    Article  CAS  PubMed  Google Scholar 

  3. Park JY, Yi JW, Park CH, et al. Role of BRAF and RAS mutations in extrathyroidal extension in papillary thyroid cancer. Cancer Genomics Proteomics. 2016;13:171–81.

    CAS  PubMed  Google Scholar 

  4. Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Führer D. Anaplastic thyroid carcinoma: review of treatment protocols. Endocr Relat Cancer. 2018;25:R153–61.

    Article  CAS  PubMed  Google Scholar 

  5. Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375:1054–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song E, Jeon MJ, Oh HS, et al. Do aggressive variants of papillary thyroid carcinoma have worse clinical outcome than classic papillary thyroid carcinoma? Eur J Endocrinol. 2018;179:135–42.

    Article  CAS  PubMed  Google Scholar 

  7. Gao L, Jiang Y, Liang Z, et al. Cervical soft tissue recurrence of differentiated thyroid carcinoma after thyroidectomy indicates a poor prognosis. Int J Surg. 2017;48:254–9.

    Article  PubMed  Google Scholar 

  8. Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol. 2010;22:395–404.

    Article  CAS  Google Scholar 

  9. Zembska A, Jawiarczyk-Przybyłowska A, Wojtczak B, Bolanowski M. MicroRNA expression in the progression and aggressiveness of papillary thyroid carcinoma. Anticancer Res. 2019;39:33–40.

    Article  CAS  PubMed  Google Scholar 

  10. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126:1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    Article  CAS  PubMed  Google Scholar 

  12. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.

    Article  CAS  PubMed  Google Scholar 

  13. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014;20:1829–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet. 2016;17:679–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28:2233–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Yao T, Chen Q, Fu L, Guo J. Circular RNAs: Biogenesis, properties, roles, and their relationships with liver diseases. Hepatol Res. 2017;47:497–504.

    Article  CAS  PubMed  Google Scholar 

  17. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17:272–83.

    Article  CAS  PubMed  Google Scholar 

  18. Zhong Y, Du Y, Yang X, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol cancer. 2018;17:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chen F, Feng Z, Zhu J, et al. Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. Cancer Biol Ther. 2018;19:1139–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang M, Chen B, Ru Z, Cong L. CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway. Biochem Biophys Res Commun. 2018;504:283–8.

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Yan X, Zhang H, Zhan X. CircRNA circ_0067934 overexpression correlates with poor prognosis and promotes thyroid carcinoma progression. Med Sci Monit. 2019;25:1342–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  23. Isaacs JD, McMullen TP, Sidhu SB, Sywak MS, Robinson BG, Delbridge LW. Predictive value of the Delphian and level VI nodes in papillary thyroid cancer. ANZ J Surg. 2010;80:834–8.

    Article  PubMed  Google Scholar 

  24. Lundgren CI, Hall P, Dickman PW, Zedenius J. Clinically significant prognostic factors for differentiated thyroid carcinoma: a population-based, nested case-control study. Cancer. 2006;106:524–31.

    Article  PubMed  Google Scholar 

  25. Lan X, Xu J, Chen C, et al. The landscape of circular RNA expression profiles in papillary thyroid carcinoma based on RNA sequencing. Cell Physiol Biochem. 2018;47:1122–32.

    Article  CAS  PubMed  Google Scholar 

  26. Dai J, Zhuang Y, Tang M, Qian Q, Chen JP. CircRNA UBAP2 facilitates the progression of colorectal cancer by regulating miR-199a/VEGFA pathway. Eur Rev Med Pharmacol Sci. 2020;24:7963–71.

    CAS  PubMed  Google Scholar 

  27. Wu Y, Zhi L, Zhao Y, Yang L, Cai F. Knockdown of circular RNA UBAP2 inhibits the malignant behaviours of esophageal squamous cell carcinoma by microRNA-422a/Rab10 axis. Clin Exp Pharmacol Physiol. 2020;47:1283–90.

    Article  CAS  PubMed  Google Scholar 

  28. Meng L, Jia X, Yu W, Wang C, Chen J, Liu F. Circular RNA UBAP2 contributes to tumor growth and metastasis of cervical cancer via modulating miR-361-3p/SOX4 axis. Cancer Cell Int. 2020;20:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66:1151–64.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng Z, Yu C, Cui S, et al. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun. 2019;10:3200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wei S, Ma W. MiR-370 functions as oncogene in melanoma by direct targeting pyruvate dehydrogenase B. Biomed Pharmacother. 2017;90:278–86.

    Article  CAS  PubMed  Google Scholar 

  32. Wu Z, Sun H, Zeng W, He J, Mao X. Upregulation of MircoRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0045825.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fan C, Liu S, Zhao Y, et al. Upregulation of miR-370 contributes to the progression of gastric carcinoma via suppression of FOXO1. Biomed Pharmacother. 2013;67:521–6.

    Article  CAS  PubMed  Google Scholar 

  34. Shen X, Zuo X, Zhang W, Bai Y, Qin X, Hou N. MiR-370 promotes apoptosis in colon cancer by directly targeting MDM4. Oncol Lett. 2018;15:1673–9.

    PubMed  Google Scholar 

  35. Sun G, Hou YB, Jia HY, Bi XH, Yu L, Chen DJ. MiR-370 promotes cell death of liver cancer cells by Akt/FoxO3a signalling pathway. Eur Rev Med Pharmacol Sci. 2016;20:2011–9.

    CAS  PubMed  Google Scholar 

  36. Liu L, Yan C, Tao S, Wang H. Circ_0058124 aggravates the progression of papillary thyroid carcinoma by activating LMO4 expression via targeting miR-370-3p. Cancer Manag Res. 2020;12:9459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46:D956–63.

    Article  CAS  PubMed  Google Scholar 

  38. Hou WZ, Chen XL, Wu W, Hang CH. MicroRNA-370-3p inhibits human vascular smooth muscle cell proliferation via targeting KDR/AKT signaling pathway in cerebral aneurysm. Eur Rev Med Pharmacol Sci. 2017;21(5):1080–7.

    PubMed  Google Scholar 

  39. Zou FW, Yang SZ, Li WY, Liu CY, Liu XH, Hu CH, Liu ZH, Xu S. circRNA_001275 upregulates Wnt7a expression by competitively sponging miR-370-3p to promote cisplatin resistance in esophageal cancer. Int J Oncol. 2020;57:151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z, Chen S, Yang Y, Wang S, Shen P, Fang Y, Fan S, Shen S, Fang X. CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling. Mol Cancer. 2019;18:150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang R, Wang J, Jia E, Zhang J, Liu N, Chi C. lncRNA BCAR4 sponges miR-370-3p to promote bladder cancer progression via Wnt signaling. Int J Mol Med. 2020;45:578–88.

    CAS  PubMed  Google Scholar 

  42. Huang X, Zhu H, Gao Z, Li J, Zhuang J, Dong Y, Shen B, Li M, Zhou H, Guo H, Huang R, Yan J. Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p. J Biol Chem. 2018;293:6693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li LM, Luo FJ, Song X. MicroRNA-370-3p inhibits cell proliferation and induces chronic myelogenous leukaemia cell apoptosis by suppressing PDLIM1/Wnt/β-catenin signaling. Neoplasma. 2020;67:509–18.

    Article  CAS  PubMed  Google Scholar 

  44. Peng Z, Wu T, Li Y, Xu Z, Zhang S, Liu B, Chen Q, Tian D. MicroRNA-370-3p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting β-catenin. Brain Res. 2016;1644:53–61.

    Article  CAS  PubMed  Google Scholar 

  45. Gong X, Li W, Dong L, Qu F. CircUBAP2 promotes SEMA6D expression to enhance the cisplatin resistance in osteosarcoma through sponging miR-506-3p by activating Wnt/β-catenin signaling pathway. J Mol Histol. 2020;51:329–40.

    Article  PubMed  CAS  Google Scholar 

  46. Zhao R, Ni J, Lu S, Jiang S, You L, Liu H, Shou J, Zhai C, Zhang W, Shao S, Yang X, Pan H, Han W. CircUBAP2-mediated competing endogenous RNA network modulates tumorigenesis in pancreatic adenocarcinoma. Aging. 2019;11(19):8484–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Nanyang Basic and Frontier Research Project (JCQY025).

Author information

Authors and Affiliations

Authors

Contributions

HX performed the experiments and drafted the manuscript. JY and YS performed the experiments. GJ collected and processed the data. JZ processed the data. QX performed the experiment and processed the data. XS designed and supervised the experiment.

Corresponding author

Correspondence to Xiaoxiong Sun.

Ethics declarations

Conflicts of interest

None.

Ethical approval

The study was approved by the Ethics Committee of the Second People’s Hospital of Huai’an (ethics approval number: HEYLL202123).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 804 KB)

Supplementary file2 (XLSX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Yu, J., Jia, G. et al. Emerging roles of circUBAP2 targeting miR-370-3p in proliferation, apoptosis, and invasion of papillary thyroid cancer cells. Human Cell 34, 1866–1877 (2021). https://doi.org/10.1007/s13577-021-00585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00585-1

Keywords

Navigation